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FINITE DIMENSIONAL LIE AND ASSOCIATIVE ALGEBRAS

II INTRODUCTION

1.1 Definition of a lie Algebra

Dfn 1.1 A Lie Algebra is a k vector space and a bilinearoperation C XL L satisfying
1 Ex n
12 Jacobi identity em ey z t Cy can z ex.y o

if chark 2 then 1 nay Cyx

Exty n y en y nay
Cx x ex y tey is ey y exo t exist e y is t c y.y
Enix t ex y t eyas t ey y ex is t ey.sc t ex y t ey y
Crisis exo chark z ex x o

chark z can'tsayanythingfurther

Motivation Groups symmetries

lie grp infinitesimal symmetries

Exm G Gln IR is a lie group Fromthis we have an associated lie Algebra givenbythe
tangent space atidentity TIG TIG I MallR analytic manifold

exp
nhoodof 0 inMnClr nhoodof l in

Glncir

inverse log

expAexpB expMCAB
where u A B A BtfCAB t 0 7,3
where CAB AB BA ematrixmalt

in general given an associative algebra R we can define a lie bracketon R by
BS RS SR alg malt

FACTS

t first approximation to thegroup operation is addition in TG

2 If g g ggag gi group commutator

the lie Bracket CAB is the first approximation in TG of commutator expat expB inG

3 Jacobi identity arisesfrom theassociativity of thegroup operation

gym a Glance is an algebraicgroup complex algvariety w continuous operation

Then T G I Mna similarly define I complex lie Algebra






































































































































1.2 Simple Semisimple Lie Algebras

Dfn 1.2 a A lie subalgebra J of L is a k subspace of L sit
n yes x y CJ

b a lie ideal J of L is a k subspace s t x y EJ me yet
note den issymmetric actually in x andy

th 1.3 a is semisimple if

comingsoon

and in general RCL issemisimple

b L issimple the onlyideals are 0 and L also L to to avoid 1 dimensional case

FACT findim lie alg semisimple direct prodof simpleones

will concentrate on classifying simple fin dim complex lie alg
classification of finite rootsystems

root system collection ofwell behaved combinatorial data
has a symmetry group called the Weylgroup whichis an example of a coxetergroup

Root systems also arise in the representation of quivers

A quiver is a directed graph vertices anddirected arrows
can have multiple directed edgesandloops

A representation of a quiver
associate a vectorspace to eachvertex anda linearmap toeach directededge in thegiven direction

Associated with a quiver youhave a path algebra
associative algebra basis corresponding to paths concatenating them

pointis the modules over pathalgebra correspond to representations of quiver

Consider indecomposable representations ie onesthat cannotbe expressed as a direct sumof two
nontrivial representations

QUESTION which quivers only have finitely many indecomposable representations

Answer Gabriel classify root systems

FINALLY FOR TODAY run through basics on finitedimassociative algebras
define radical a canonical ideal

Jacobson radical R semisimple JCR 0
RJCR always semisimple

forfinite dim Artin Wedderburn

semisimple k alg are direct products of simple ones
simple ones I MnCD D division algebra






































































































































12 LIE ALGEBRAS

21 Associative Algebras
recall Z R NER VYER ny yx

Dfn associative k algebra ring with 1 and 0 K R a ring homomorphism 1 1 andwant
that K E Z R centre of R

Idea take an associative

Then R is a Lie Algebra via Cris rs sr k algebra give it a lie

In particular Mnlk is a Lie Algebra associated with Gln Bracket and turn it intoa
Liealgebra

Check
s I siren Irs sr ks sa ris his similarly risty r s rid

a g 7 a yz ty x yz a zy nyt yes azy zyx
But G nyt yzx xzy zyx 0

2 2 Classic Examples

1 matrices of trace 0 Sen sin nxn matrices w determinant 1 Ten Mnl
is associated with Sin

eg 812 standard notation e f u o

note that Leif h Chie ze Chif 2f

121 Son skew symmetric nxn matrices associated with special orthogonalgroupson

eg n 3 503 A 8,81 Az 8 A 8

Then A1 Az A Az Az A A A Az

3 Span contains matrices associated with symplectic group span of matrices
that preserve a nondegenerate skew symmetric product on k

e.g let's say the skew symmetric form is represented by J i'In
Then span consists of matrices s t 3 JXᵗ 0

alternative formulation take 3

these matrices are ofform B and C symmetrict.BA
dimension of span is 2m n

Ac Bai
For thisformulationofJ youget B and C skew symmetric






































































































































4 Gn Borel subalgebra of Ten of upper triangular matrices
associated with theBorel subgroup of Gln consistingof invertible upper triangular matrices

5 Rn consists of strictly upper triangular matrices associated with the group of
upper triangular matrices with 1 s on the diagonal
N denotes nilpotent

2 3 Derivations

Given an associative algebra R we candefine a lie subalgebra ofEndaR

yn
Dfn 2.1 a linear map D R R is a derivation if Dors Der s tr Dis

I
n n
inendringopiscomp becauseidentity
is idmap sina.net isnot
a nomooerbc itwouldsendones

derivations R R forms a lie subalgebra of EndyR form liealgebra via fig foggot

closedunder E Let D DzeDerkR was that D D eDerkR Now DiDa DDa Dad
Then for rise R
DDa rs D Deers D Deer s treats DDeloris DeerD s D r Dacs treeDays

So that bDa rs Papi rs DDa Dabi r s t r DDa DaDi s EDDaler s t rep Dz s
I.e DiDe is a derivation

eg Der kex floc flu ekex equivalently DEris Der s CrDcs

eg DerKEXX Witt algebra closely related to Virasoro liealgebra

notice no need for R tobe commutative Geometrically if R is a coordinate ring then the derivations
correspond to vectorfields

Dfn2.2 An inner derivation of R is ofthe form R R St Cris for some re R

Innder R inner derivations forms a lie ideal in DerCR

InnderCR eDerR Let D EInnderR and Dee Derek was that DiDaleInnderer
Now D s Cris for some re R Hence

DiDa q DDaca DaD q Cr Dag Dalerall
r D q Deer a ErDaca
Deer a e Innberer

1 Further Deify I HH R R
e RM

1st Hochschild cohomology groupof R

R commutative then x y ny yo my my o2 If R is commutative then InnderCR 0
onlymapin Innder is omap

3 Lie algebras arisefrom considering derivationsof other algebraic structures






































































































































Dfn2 3 a A lie algebra homomorphism P L Lz is a k linear map satisfying

p ix y pix ply

b A linear representation of a lie algebra L is a lie algebra homomorphism Pr L EndV
1

intosome
If U EV and pull u E U thenthere is a subrepresentation vectorspace

Pa L End u

ii

a.m

putc u putc u

c an irreducible representation is one wherethe only such U are 0andV

Ext 1 adi L End L

adios co s omap
cosy o.n.gsforanynet

orig
ad exy z Ny Z u eyz Cy Can

ada Cyz adly ear
adlacey.es adly exits
adulladcy z adcylladix z

adk adly t

Den 2.4 The centre ofL n ex y o VyEl
Keradc

If ad isinjective then l embeds in End L andso I maybe regarded as a lie subalgebra
of EndL in thiscase

Thm ofAdo if chark o a finite dimensional I can always be embedded in some Endv

In fact it'salso true in chark P Iwasawa much harder

Exm 2 let K IR IR is a lie algebra using the vectorproduct

standard basis e ez ez Then e xez ez
ez xez e

es x e ez

and adc L End L I M3IR
ei n Ai E 503

Ker add 0 Im adil 503

Thus IR vectorproduct 503 R






































































































































Representation lie algebra homomorphism p L EndV

e 8 f 98 h
Cet h eh e ze ehf af

Example 2 some representations of sea
Take KEXY polynomial algebra in 2 variables and construct a that sea Der kexY by sending
e x lay

m

fr y lax epeespet exalay 42123
h x2ax y2124 x'by yay y212 1 2124

pluspies x2x 4 4 x'lay
xalay xHay 2xhay apes v

Define Un span of monomials of total degree n cplhl.PH xtax Hay yay

n

space of homogeneous polynomials of degree n y x xox 2pct v

psea Un E Un

Consider when nel Then sea EndVi Mack
e n 8
f 98
h a pig

canonical representation

consider when n z Then sea Endvz M3 k is theadjoint representation adsez check

Lem 2.5 Pn sea End rn is irreducible for all n

PI let O u sun suchthat psea EU we wanttoshow u un so take a nonzero

homogeneous polynomial ofdegreen

ijnbijXiy
apply X tothis polynomial sufficiently manytimes to get a nonzero multiple of X Hence X EU Now

apply Y x repeatedly to get a nonzero multiple of other monomials X'y with it n Thus UnEU
so U Vn Hence the representation is irreducible

Terminology representation refers to themap but in practice many refer to v as a representation the
vector space Brookes tends to refer to u as an L module by analogy with usage in ringtheory
and simple L modules corresponding to irreducible representations

warning definition of a simple lie algebra is non standard Most people don't allowthe onedimensional lie
algebra to be simple With Brookes definition we canobserve

observation 2.6 L is a simple lie algebra adc is irreducible

Cor 2.7 of 2.5 sea is a simple lie algebra
pf we've seen that adsl is irreducible in 2.5 n 2 case






































































































































2 5 Soluble Lie Algebras

Den 2.8 An Abelian Liealgebra L if my o f a yet

Dfn2.9 Thederived series of L is defined intuitively

co L Let L L span easy a yet
derived subalgebra

pit Leiil Lei izz

Dfn 2.10 L is soluble solvable if L 0 for some r The least such r is known as the
derived length of L

Note each L is an ideal of L

suffices to show L is an ideal of L if a e i then I x y et sit a Cary Let eel

Then Cry z e L since Guys eel Let i case hold it ditL if ae lit then
Ca 7 e L t since say a Caryl x yee and by Jacobi

Ccny z CyCy EatCy7
i fi

Induction
exy z eCecilLily Leith
it is an ideal of L

Non Zero Abelian Lie algebras are precisely those of derived length 1

Rem If J is an ideal of L then 4J has the structure of a lie algebra via Ttx Tty Exy J

Lemma2.11
1 Subalgebras and quotients of soluble lie algebras are soluble
2 If J is an ideal of L then

L is soluble J and 45 are soluble

1 suppose L o and let I be a subalgebra consider that I e L so CI I e cries and sogoingdown

the linewe see that I e L But if er o then I o so I issoluble

let J EL bean ideal If her o then 4 r cents o s s 4 r
o

w n n
exts yes x y J Hence if 4 O 5 0 sothatactually i is a subalgebra

of J But yes o so really ers o L is soluble

Rem 14 canpartly be expressed as if I is a soluble ideal of L suchthat 4s is soluble then L itself
issoluble






































































































































Example i let L be any 2 dimensional lie algebra
case x y 0 a yet and is abelian

say L s t Exly to

However a y form a basis then of L
L is span of EI x y y.gg

1 is 1 dimensionally spanned by x y

But I dimensional lie algebras mustbeabelian axiom 1 of lie algebras
So we get a derivedseries L 0

To summarize in case derived length 1 case derived length 2 In bothcases I is soluble

Exercise classify 3 dimensional lie algebras

12 The lie algebra so is not soluble Consider that we have a basis niy t with
x y 7 y z 2 t.sc y Hence L L

Lemma 2.12 The sum of two soluble ideals is a soluble ideal

pf Let T To be soluble ideals Then J Iz is an ideal and

5 525 is an idealof 45 and is the image of J underthe canonical map L 4J Hence
51 52 5 is soluble Now use 2 11 to see that J J2 is soluble

Let L beany arbitrary lie algebra and s a maximal solubleideal If I isanyothersolubleidealof L
then St I is soluble By maximality S I L or I Es So 5 is actually the unique maximal
soluble ideal of L This motivates the following definition

Dfn 2.13 The radical RCL of finite dimensional lie algebra L is themaximal soluble ideal
It is the sum of all the soluble ideals

Recall definition L is semisimple RCL O If L is a finite soluble lie algebra
then R L L

Exm simple lie Algebras are semisimple

Suppose that L is simple Then L is an ideal ofL bi so for each i ceil o or L if Lei L
i then L is not soluble and theonlyotherideal of L is o so we musthave RCL 0 L issemisimple
If i 0 forsome minimal i then i i L L 0 But by minimality 1 L so that
L L 0 But this contradicts the definition of a simple lie algebra so actually more generally simple
lie algebras are not soluble

Note in general that R 41214 O since a soluble ideal of 412cL would pullback to an ideal of L
containing RCL and 2.11 would show that this was itself soluble andhence contained in RCL
Thus RCL is semisimple






































































































































Thm 2.14 Levi proofomitted If chark o and L is finitedimensional thenthere exists a lie subalgebra
L such that L nRCL o and L L t RCL

Hence L Z Rca is semisimple

Dfn 2.15 This is the Levi decomposition and Li is the Levifactor subalgebra

Rem This does not necessarily apply in charts p or for infinite dimensional lie algebras

Example 1 L Tea then RCL 2 L scalarmatrices at

then L seat RCL

sez is a simple algebra and therefore is semisimple Thus sea is a levisubalgebra

Example 2 L s É E gla

Then kill gft check soluble ideal

Levi subalgebra L see o
o se

I seex sea which is semisimple

rem a soluble ideal of seaxsea would project to each component to give a soluble ideal of sea andhenceo

2 6 Nilpotent Lie Algebras

Den 2.16 The lower central series of L is defined inductively

Lei L L ite Lei L take spanofthese elements
is 2

Note 1 Lei are ideals of L
2 counting starts at 1

Liz La L Lil Then for any nelez yet ofcourse nel exg Echl Lea
so lie is an ideal Let Lei il bean ideal LetseeLois yet
Then Cuny carb y for aeLeih bet

ByJacobi Cay a b ebay as
c Leid c Chi nie Lois

We saythat L is nilpotent if Lcc 0 for some c and the nilpotency class of L is the
least such c

Lemma 2.17 L E Lan An

pf exercise






































































































































Proposition page12 of Humphrey's let L be a lie Algebra
a if L is nilpotent then so are all subalgebras and homomorphic images ofL
b if 42cL is nilpotent then so is L
c if L is nilpotent and nonzero then 2 L to

If a if L is nilpotent and p L M is a wiogsurjective lie homomorphism then I CEN suchthat
Lcc o But if Leo o then

place pl LeD L CpLccn PKD I pilen M

continuing onwards it follows that actually plica Mcc But plica plo 0 Mcc o
Hence M is nilpotent with nilpotency class EC

Now suppose L nilpotent and J El is a subalgebra Then it's easy to see Jai e Lais ti
But L nilpotent Lcc o forsome cent

Jcc E La o

J is nilpotent with nilpotency class EC

b let 42cL be nilpotent Then I CEN sit Yau cc so But by den of the lie Bracket
on quotients Liza Loayza using fact that centre is an ideal and

anything bracketedwith centre is zero

This says that La E 214 But 2 L net Cary o tyell Soall we need to do to show
L is nilpotent is take the lie Bracket with one more L

Lean La L E ta 4 0

L is nilpotent with nilpotency class E Ctl

c If L is nilpotent then I CEN sit cc o i.e that Lccn L 0 Supposingthat c isminimal
lean to By definition of 214 of Leen e ZC so za to

Example Rn strictly upper triangular nxn matrices E Jen

eg 23 Heisenberg Lie Algebra

basis 889
0 00

X Z Y

Then CxY Z Ex z Cy21 0

Z 4 Z The Heisenberg lie algebra is nonabelian and has nilpotency class 3

Example 3 soluble but not nilpotent

Gn Borel upper triangular nxn matrices

Gn In Gn is soluble but not nilpotent






































































































































2 7 Lie and Engel's Theorems

Thm 218 Lie For algebraically closed k chark o Suppose L E EndV with dim V20
suppose L is soluble Then I EV to such that ncu au for all nel

This is saying that v is a common eigenvector

Thin 2.19 Engel Suppose L EEndv is a lie subalgebra dimV20 andevery element of L
is a nilpotent endomorphism ie O nel Jae s t na o Then I v o rev such that
NIV O KN EL

An easy induction shows we can represent L by strictly upper triangular matrices
Thus L EMn In particular L is a nilpotent lie Algebra

Using 2.18 and an easy inductive argument we can show that there is a chain of subspaces

O V04 Vi f E Vn V

with dimVi i and Levi s Vi Such a chain is called a maximal flag

If we take a basis of v so that Vi c er ei then we get that L is
represented by upper triangular matrices and so I can be regarded as a lie subalgebra of Gn






































































































































I INVARIANT FORMS T CARTAN KILLING CRITERION

31 Invariant forms

Dfn 3.1 A symmetric bilinear form C Lxi k is invariant if easy z n Cyz

Den 3.2 a if p L End v with dim Vas is a representation then

Cary p Tripp y
Tomphisms

is the traceform of p
b The trace form of the adjoint representation when dimL c o is the killing form

Lemma 3.3 il trace forms are invariant symmetric bilinear forms
ii if J is an ideal then Jt a a y o f yet and for an invariant form C

then It is an ideal In particular it is an ideal of L

proof Ex 1 use that trace is invariant tr carb c tr a Chic t a b c e end v

i tr cable tr albie t a b c e Endlul
Laible ab bale abc bac
and albie a be cb abc acb

But tr ab treba tr abc bac treabc acb

ii if J is an ideal let s x any o f yet Let seeJt yet Then since c
is invariant Cary t a cyst o since see Jt so x y EJ It is an ideal

Rem There may be other invariant forms that arent trace forms

Thm 3.4 Cartan's criterion for solubility Let chark o and L be a lie subalgebra of
EndV dimuco Let be trace form of the embedding p L End V Then

L is soluble x y p o f Kel y e L

Thm 3.5 cartan killing
criterion

semisimplicity Let chark 0 Then
L is semisimple Thekilling form c ad is non degenerate

Cartansolubilityfor rep's

p endcut dimlulco
charlie so Then

Note 3.5 is fundamental in thedevelopment of thetheory ofsemisimple lie algebras
pill soluble Caryp o

un et
Lie 3.4 13.5 ye L

Note 3.5 can be used to show a result about derivations of semisimple Lie Algebras

Dfn 3.6 A derivation of a lie algebra L is a linearmap L L suchthat

D Easy Ex Dy Dx y

Inner derivations are of theform yes exy

Innerderivations ad L






































































































































Thm 3.7 if chark 0 and dimic o and L issemisimple then Derce ad L

simple Lhasno propernontrivial
ideals

me

qq.LY
I Ender soluble ayep O semisimple RIL o basicallyRC

Ʃ ofall soluble ideals of L Andso
3 4 3.5 949 ifeng.mtehatsenfe.is maximallyI semisimple c age nondegenerate

Proof L finite dimensional chark 0 RCL radical Lt orthogonal space wrt killing form
n treadficladly o yet

suppose s is an abelian idealof L Take net yes Then ad J and a ftp ffffffffgf
since J is an ideal

since J is abelian ajcjiijj.li Hence adccadly adv adly adhdadly o Hence

ad a adly is a nilpotent endomorphism of L andso has toCadenadly o

Thus a
ʰ É net yes so go.lt But if RCL to it contains a nonzero abelian

ideal JE L R L is soluble take last nonzero termin derivedseries of RCL So if RCL 0

then t to.EE
we proved ad non degenerate then c is semisimple

The converse is a bit more complicated Suppose L is semisimple and set J L an ideal of L
Consider ad L endly and the image adi J We have by assumption treading

O

Vice yet since I Lt In particular tr adenadly 0 xeJ yes

Cartan's solubility criterion 3.4 add is soluble Note that ads ad J since ad is a
lie algebra homomorphism But keradd 2 L centre of L commutes with everything which

is an abelian ideal Butby assumption RIL o Kerade o since 2 L ERCL so I ad J

since adi is injective Ie J is soluble Hence I RCL 0 and thus Lt o ad is
nondegenerate

My version of proof

suppose L is fin dim chark o Denote RCL radical and Lt the orthogonal space to L
wrt to killing form Remark that c is nondegenerate 03

it Exel Cnet cn.gsad o yet
net trlaffgg.ly otyel

suppose C i ad is nondegenerate we want to showthat L is semisimple RCL 0 We'll prove the
contrapositive if RCL 0 then it 40 So suppose instead that RCL to Since RCC is soluble

by dfn its the maximal soluble ideal thenit contains a nonzeroabelian ideal J E L

RCL soluble them sit RCL o n minimal Hence RCL RCC RCLm o

Reach1 E L is abelian andObus an id
iniyfy.io

tantafebai if fthat






































































































































L is

so L contains a nonzero abelian ideal byminimalityofn However consider the following

let net yes Then adly a x y EJ So adly c and again addadly i E J Since J
is abelian adly s 0 so adaadly is such that forany tel

aan add

potentendoof i andadticadly
so has trace o

Hence Langsad to net yes OF 3 E Lt so it 0 c ad is degenerate

This proves that c ad nondegenerate I semisimple

Now let'sprove I semisimple c sad nondegenerate net we want now ma
if RCL 0 We can do that if we show J RCL

Consider the map add L Enact in particular the image adc J Since J Lt by
assumption xeJ get toCadenades 0 Ca g ad o xet yes el

Cartan's criterion for solubility says then that ad t is soluble Note that adult add
since ad is a lie algebra homomorphism But Kerade Z L which is an abelian ideal
The centre is then soluble so Z L RCL But by assumption RCL o so Kerad Z c 0

Therefore ad is injective I add J iso to itsimage under adv Since adult is
soluble then so is J Hence I RCL But RCL 0 5 0 Lt 0 CDadis nondegenerate

adf to add o cKerade 2 L ER 4 0 J o
If

I'ine's.ms
er itI iE E.IE l t E.and need not

Lie Engel 3.4 for algebraically closed k chark o

proof WTS LeEnder soluble treny 0 xEL yet But this follows quickly from the corollary

of lie's Thm
L soluble basis of V wrt which L is representedby upper

triangular matrices LEGn

1 E Mn strictly upper triangular matrices

If NEL ye L then ay has zero entries on leading diagonal tray 0 net yet

Argument for converse is much more complicated Assuming the trace condition we want to show L is soluble
For that its enough to show that L is nilpotent We want to apply Engel 2.19 and so we need
to establish that elements of L are nilpotent endomorphisms We'll needsome preparatory linear algebra






































































































































Dfn 3.8 n eEnder is semisimple it is diagonalizable
minimal polynomial is a productofdistinctlinearfactors

Rem 1 if n is semisimple new w for a subspace w V then a w W w is semisimple
2 if my semisimple and my yx then a y are simultaneously diagonalizable and aty
isalso semisimple

Lemma 3.9 Jordan decomposition

For a Ender
1 unique us an EndV with us semisimple an nilpotent and an as commute and a as tan
2 polynomials pct get with zero constant term suchthat as pal and an q a So
Us an commute with all endomorphisms that commute with a

3 If u we V and new e u then as w EU and an w EU

Dfn 3.10 ns an are called the semisimple and nilpotent parts of a respectively

Exm if a is representedby Jordan normalform Then as an

over an algebraically closedfield we know that n canbe represented byits Jordan normal form which

we can split in a similar fashion It is theuniqueness that is harder toprove

Ptof 3.9 ii iii immediately as pal if newsen ien atw É titi.eu similarlyfor an
Pfof Iii Let 1 t ai be the characteristic polynomial of a and Vi ker a ait for eachi
i.e the generalized ai eigenspace V Vi partitionsV

the
characteristic polynomialgot m

is
ftp

i mi Find a polynomial such that
modt pct ai m existsby Chinese remainder theorem

Define act t Plt Set as pea an qlx Then p and q have zeroconstant term

On Vi as ail acts like a multipleof a ai mi and so trivially us atteigenspace
for us i e us is diagonalizable Vi isthe ai eigenspace of us Also note that an x as

actslike a air onVi and hence nilpotently Thus an is nilpotent

Uniqueness of i if
tonguesn

semisimple and n nilpotent then n and s both commute with n and
hence with us and n

us s n un

bothsides are semisimple and nilpotent so they mustbezero Hence as s an n Souniqueness holds

if is nilpotentthen a centst 1 cc o L ci O But fromexamplesheet1

1 m ccam um 1 o

1241 o say
semisimpleandnilpotent element o

semisimple diagonalizable diag figgaquettinilpotent there
matrix

only eigenvalue






































































































































Lemma 3.11 if x ele Ender let us and an be the semisimple nilpotent parts Then ad xs and adorn
are the semisimple nilpotent parts of ada

pining EYpb
sinceabelian

Remark if L is semisimple andso 214 ERCL o we know that L add e Endel And we can
say that nel is semisimple if ad n is semisimpleI
some me72 Define a mapItaniEnoch Ender yes any with composition and Olan EnderleEndivl

y yun Then Otaniand Olan commute and ad un is the restriction of often Olan to L
Since unm o we have that Itanm 0 0 nm considerthen that

aden often Olan r

o for re am
usingfact that sin andOhm commute

and expanding byBinomialtheorem
So adcan is also nilpotent

Note that us an commute adc's and ad un commute But ad is a linear map so adat adestadiant
It remains toshow that ad us is semisimple The fact that us is semisimple I basis of eigenvectors
in V ascril ai vi say Define maps Oi EEndV virus and ve o l i corresponding to an elementary
matrix Notice that usOi vi a vj us di up 0 Also note that Oi as Vi air Oi usup o

Thus adxs Oj aj ai ij I.e Oi form a basis of eigenvectors of adhes Endou Endv Thus

we know that adios is diagonalizable andso its restriction to Le Ender adc's e L L is diagonalizable
So adus is semisimple

astri ai vi define Oi eendlul rit vis ve o te i Then usOijvi as ri air and

usOiive us101 0 Then adios Ioi ns.oiil nsoij oij's
antingon any uh usoi oijustive

usOi via Oi anic
when Kti map Io when Kei ajbij via ai Oi vid

aj ai oij

Lemma 3.12 Let A andB be subspaces of Enders with AEB and let t teEndv Ct B EA

Let wet and suppose w satisfies tr wt o f te t Then w isnilpotent

Pf Let we wstwn semisimple nilpotent parts we want toshow us O Pick Vi vn abasis
of eigenvectors of ws Ws Vi aivi Define Oi as in the previous proof of 3.11 we have that
adwsOi ai ai i as before Assume us to then I i s t ai to Let E Q span of an an
f E Q a linearform and choose it tobe nonzero Set yevi flailvi
So adly Oi flail flailOij fla ail Oij by linearity of f Let ret be apolynomial with zero
constant term so that reaj ai fla ai ti j Then adly readwell By 3.11 adws is the
semisimplepart of adlwl andis a polynomial in adw with zero constantterm bylemma 3.9 ii
So adly isalso such a polynomial expression

But WET and so EwB EA ie adw B EA So adly B cA By supposition trewt o f te t
and so trewy 0 But trewy E ai flail E Q But f is linear andso applying f weget
E flail O so flail 0 and hence f has to be the zero form E

So Ws 0 i.e W is nilpotent






































































































































mm3x cartan'scriterionforsolubility Letchanoand ibealiesubalgebraof
end d ggtomEtnegeembeggingpc

senacnthen

Nowback to the proofof the Cartan solubility criterion 3.4

We're trying to show that the trace condition implies solubility We'd observed that it was enough to showthat
the derived subalgebra L consisted of nilpotent endomorphisms suppose rats of holds

Take A L and B L in 3.12 So T teEndv t.LI E L Notice that L E T as L
is an ideal of L Recall t is spannedby ca z n z El Let t et
But tr ix 2 t treacly

0 by assumption city p o u let yet

so tr wt o f we l and tee But L s T andso w is nilpotent t we L by 3.12

Proofof Engel'sTheorem

recap thmz.la Engel suppose Leendert is a lie subalgebra dimuco andeveryelementof L
isa nilpotentendomorphism ie u net saen st na o Then I v o ver such that
niv o knee

Proof byinduction on dint
p
eigenvalues arezero

Clearly true when c o if dime I then I x Then a nilpotent soul o forsome u to

Suppose dimV72 and assume result holds forsmaller dimensions Let L be a maximal wit proper
subalgebra ofL Note that dime since ex is a lie subalgebra forany net since l is a lie
subalgebra we candefine it L End hi an ytl no crystal
Note that dimit Li edime E dime Moreover Alli consists of nilpotent endomorphisms similarargument
to one used at the beginning of 3.11 Applying the inductive hypothesis I y e44 4h such that
it a ly 4 o f ne Li This implies Cary El t nel t

Note that yell so L t ly is a lie subalgebra of L and strictly contains L But bymaximalityof Li
L Cy L Also this shows L is an idealof L

y Vo EVo to seethis note
ncyou ex y yn v

iCary u t y nevi
O tyco o

ExY El by x

Thus Vol o so we're done

mm

Basic idea we know c L toys where Li is somemaximal proper subalgebra of L and Y is some
endomorphismgivenby theaboveargument now byinduction dim4 Cdink a u to sit txeli nor o

Wethenlook at all the possible nonzerou thatsatisfy this Vo u to ev acu of Eli and
thenshowthat y ve Vo s t girl so too since l L they neut o f x E L proving the claim






































































































































Proof of lie's Theorem 2.18

RecallThm 218 Lie For algebraically closed k chark O Suppose L E EndV with dimV o

suppose L is soluble Then I EV to such that ncu au for all ne L

Rem dealing exclusively with algebraically closed field of chark O

peony
otogether

is iiii imAssume dimL 0 Then I soluble E L Note that the is an Abelian lie algebra so any

I is a subspace of i therefore an ideal and hence L is an ideal in L

h is a subspace of lull and i an ideal Hence L is an ideal in L
note that if nel andyet then my El sine

Intl ly t c Easy th

and 411 is abelian easy th otc easy f L e L easy Eli

Use induction to see that he has a common eigenvector ucu anv f nel Themap an au L k

is a linearform
Let we wev new anw t Keli toe since vew Think of W as a common eigenspace

Li is of codimension 1 so L L y for some yet We'll show that W E W

certainly Lilw W by construction so we justneedto confirm thisfor y y w EW But
secyw ya easy w

yn w tearycw
ylanw exg w
anyowl t denyw since exly El L anideal

we'll get what we want if we can show deny 0 Then ylw E W

Take some wew wto and let Un Lw yowl y w Then Cw his424 mustterminate

at some ur but up to that point Un has basis w yowl yn w linear independence

We'll show that Li leaves each un invariant if l un E Un

Now U Cw and now aww E U tic El so the beginning isobvious For U2 U2 Cw yew
We saw acycw ynew t Carycw

axyow t deny W Euz

Continuing onwards we get that on un using the givenbasis n is representedby an upper triangular matrix

d acrosstopyouget
ax cays Rex.gsy






































































































































Thus n un e un for each net and n un is represented by amatrix of trace nan
Observe that Ur is invariant under y your e ur Thus Ur is invariant under L L toys

Notice that Exny ur is represented bya matrixof trace r deny because Cary Eli
But Cary ur must have trace zero since commutators of endomorphisms have trace zero
But chark o deary so as needed to complete the proof

Wis invariant under L Because k is algebraically closed I weW w to an eigenvector

for y This w is a common eigenvector for all of L

Finally for this chapter

Proposition 3.13 Let L bea finite dimensional lie algebra chark o
i if I is semisimple then L is a direct sum of nonabelian simple ideals
121 if O J is an ideal of L Li then the ideal is adirect sum ofsome of the Li
131 if L is a directsum of nonabelian simple ideals then L is semisimple

Proof i induction on dimL
Let J be an ideal in semisimple L By 3.5 the killingform on L is nondegenerate The orthogonal
space It is an ideal 910 In particular

dimJ t dimIt dint p
But Inst is soluble and an ideal by Cartan solubility criterion 3.4 applied to ad inst and so
is zero since L is semisimple Hence L J Jt Note that any ideal of J is an ideal of L
and similarly for Jt So J and J are both semisimple

J is semisimple and T fl n 971 0 t yet the orthogonal space wit the killing
form Cartan's solubility anterior says that k Int issoluble iff any ad so f ret k gt k But

at K E k sine K is an ideal I simple cant and 2 taek yf k net and ye Jt by
atn of st ii y ad o Henie K is soluble since Inst is a soluble ideal of L That E Rio
But byassumption c is semisimple so Inst e RIL o Inst 0 L J It

Also any ideal MEI is an idealof L this is true because of the splitting For xf M E J
then t te L we ran write a to zi where toes and ti est Then

n z ex to exit

now to EJ and in a m Em totem and lift tie it and s t both ideals means that
exit e Inst o ex a o That exits t m to m a mem zee mis an idealin L

Hence RCTI RI t E Rill sum of all soluble ideals in L and if say k e Rls is soluble in J
then it issoluble in L too 1 so L semisimple J and J semisimple too

Synopsis induct on dime

I if I not simple 7045EL ideal
1By C sad nondegenerate J It L
3 L semisimple J semisimple

if METEL then MEL






































































































































By induction J and J are direct sums as desired

Iii If JML 0 then Li 53 0 since Li J are ideals and hence JE it we're using
that Li has zero centre If Joli to then the simplicity of Li Inti L Li EJ
Hence I Li

iii If L is a directsum of nonabelian simple ideals then by Gi RCL will be a direct sum of
some of the Li But RCL is soluble and so cannotcontain nonabelian simple ideals so 1214 0

and hence L is semisimple

Suppose J is a nonabelian simpleideal of is Then J onlyna ideals o andJ Also nonabeliannes

implies that I lit J sit at to Hence since c i J E 55,53 J so 3 to

and is an ideal 511 3 which is not soluble But Riel is soluble so itmustbe
that Rill o

I CARTAN SUBALGEBRAS AND WEIGHT DECOMPOSITION

Throughout L is finitedimensional over a

Den 4.1 Lay nel adly a is the generalized a eigenspace for adly y o

Note ye Loy since Cyy 0 we write lay so if a is not actually an eigenvalue of adly

Note L Lay is a direct sum of generalized a eigenspaces By Primary Decomposition Theorem
sumover all a's

Lemma 4.2
i Clay Luny E Latu y
ii Loy is a lie subalgebra

derivatione property

pf ii is immediate from 1 1014 Loy E 10019 1019 a linearity

il consider adly a tuli x z
cadcyxa.es exadvices acuits merits

adly ai n Z t C n adly Milz caacylcnizstex.adiyiczisteax.es ex me
Clancy aon e ten adly ulcer

and so Cadcy catali Cx t

for sufficiently large n these terms allvanish






































































































































y gitjen
so 2 0

Hence if he lay te Lucy then Exit E lately
Yo'm e

Dfn 4 3 A Cartan subalgebra Csa H of L is nilpotent andself idealising wifi H

Theorem 4.4 Cartan Existence of Sas

H is a Cartan subalgebra E H is a minimal subalgebra of the form Lory

All CSAs have thesame dimension

Thm 4.6 not proved here

Any two CSAs are conjugate under thegroup of automorphisms of L which are generated by

eady I adly t 1 11 t with adly nilpotent i.e finite sum

Then 4.7 not proved here

The set of regular elements elements yet sit Lory is aCSA is connected
Ie Zariski dense open subset of L

Example L se he o e 88 f 98 Cerf h Chie ze eh f Zf

Then loin Ch Lan Le L an f And L see Loin than t L ah and
Lan L 2n E Loin Further Lon Ch is a CSA clearly can't haveanything smaller its minimal

Note Loy is always nonzero since ye Loy in general

Theorem 4.8 Let H be a Csa of a semisimple L Then
a it is a maximal abelian subalgebra
b every elementof H is semisimple

c The restriction of the killing form C sad of L to H is also nondegenerate

Proof C H Loy for some regular y by 4.4 Consider the decomposition L Lory foLay

By 4.2 La y Lay E Latuy So take U E Lay ve Lucy with Atm to Then applying
adluladiv this maps each generalized eigenspace to a different one

Sotread a adult O Thus when u ta o L a y is orthogonal to Lay wit the killingform C ad

so L Lay La t L a y the rest ofthe guys is an orthogonal direct sum

But cartan killing 3.5 C ad is nondegenerate we assumed is semisimple

so its restriction to eachdirect summand is nondegenerate i.e the restriction to Lory is nondegenerate






































































































































nilpotent soluble H H ad to

a H nilpotent from den ofCsas Cartan solubility 34 H is orthogonal to H wit C ad
But we've just shown that the restriction to H of C's ad is nondegenerate Hence H o
That is H is abelian 54,47 0

Long goes aday o net adly o

To see maximality H Loy for some ye L Then H Long eel Cy23 0 Hsince it is abelian
But if H H isabelian then H commutes withy since yen andso H H

H E tel 54,23 03 E H Hi H

b Take NEH Let n as tan be the Jordan decomposition of N If h commutes

with a then n commutes with us and un Cada is injective

Recall that adn adantadas nilpotent semisimple components semisimple diagonalizable

Weknow that H is abelian andso iommutes with set melt and hence H iommutes with an too
But if an 4H then H can is an abelian subalgebraof L larger than a acontradictionby
the maximalityof H So nnett

adan nilpotent ad h adcan is nilpotent using commutativity
trcadchladian 0 nilpotent maps have traie o
Chinn ad to them

But unEH andwe've shown that the restriction C sad to His nondegenerate

so itmust be that un o Hence n us n is semisimple

Lemma 4 9 converse of48 Let It be a maximal abelian subalgebra El all of whose elements
are semisimple Then it is a Cartan subalgebra

pf H is abelian H is nilpotent All left to show is self idealising i.e nett exH EHS H

If CnH EH then ne Loy fyeit But y is semisimple andso Loryis diagonalisable
I e Lay is the o eigenspace foradly notjustthe generalized eigenspasel

Since it is abelian if Catti sit then t yet easy EH ly Caryl o at long

So n commutes with y tyell Andso Ht x is an abelian subalgebra maximality NEH
Thus H is self idealising

Remark Some authors when just talking about semisimple define csas as maximal
abelian subalgebra all of whose elements are semisimple

Corollary 4.10 of481 Regular elements of semisimple L are semisimple

pI y regular Lay CSA
But yeLoy y is semisimple by 48






































































































































Now suppose I is a semisimple complex lie Algebra Take it to be a csa with basis his thn
An easy induction on the dimension of H shows that I decomposes as the direct sum of
common eigenspaces for adH needtothinkofproof

using that adH is abelian and elements are diagonalisable Each suchcommon eigenspace
is of the form La

La nel adChica a 4 x theH ratherthanfixinganh and letting a runthrough

ideaspecifya linearforma
H E is a linear form Yousortof fix n and leth run through the

eigenvalues dependentonthis

Notice that Lo H since it is maximal abelian to nel adchical o then nel Chin o
T

abelian Heroalsocalled rootspacedecomposition
buta maximalthenDfn4.11 The weight space or Cartan decomposition of semisimple L wit CSA H

L Lo ft La with Lo H

The nonzero elements of La have weighta

The La to are the weight spaces sometimes useful towrite La even if its zero

The nonzero weights are called the roots of L with

Notation I set of roots

Ma dimLa
C killing form

complex liealgebras

L

I
are semisimple real lie algebras that don't have such a decomposition in which case thefollowing
does not apply

Lemma 4.12 ahah allay Sayyou have

a my EH x y I ma diddly adlai andadul splitsoverG la

b La La E L at B

C C restricted to H is nondegenerate

d If a p weights and if atp to then Cla Lp o

f a weight Lane at o

9 If O the H then 21h 0 for some de So I spans Ht dual spaceof H






































































































































a choose a basis for each weightspace La and take union to give a basis of LThen adex adly are both represented by diagonal matrices

Take tr adhiladly to get a

L got la andfor earn La we can choose a basis combining givesa basis of L Now we know
that if ur eh then the actionof adly adlu on L splits overthis direct sumas

eg adla i Eegad a La

And the whole pointis that on La since u eh ad a n ah t k e la on abasisforla then the map
ad a becomes just a diagonal matrix e.g if my is a basisfor La write x o and y Y
and then

ad a x aculk and ad u y duly La so adia o alu and

we can combine this idea to ive a diagonal matrix on all of t Hence the result follows

b similar argument to 4 2 i

let ne la yelp then
acichlexy Cadchin y ex acichly

ath x y Ex play
21hCary pentenny

atp h Cny exile late

C 4 8 c The restriction of the killing form C ad of L to H is also nondegenerate

d Similar proof to thatfor 4.10 a

if a p to then I neH sit atp n to Then wejust usebasic properties of c i

aintCary Cashin y cadentmy chin y en a y n Chay

on acting ca penny panicsays
aint pin ing o easy o

ythe.noygape
4Yd.ed

But C nondegenerate on L 3.5 and so La o E

Suppose deIo and a40 By for all weights p including a we have La Lp7 0
i

atp to Now if La4OI then La o and La p so t p so that actually
Cia L 0 But C is nondegenerate La o E sine a is a root

He canc j
t

in Ip o

Upt a
rip
B a






































































































































eat

The nondegeneracy of L i restarted to it then implies that h o we've actually proved the
contrapositive to so

If h 0 y ae I sit achl to

Example se tracezero 3 3 matrices Let H bea Cartan subalgebra of trace zero diagonal

m

H o

o
diagonal whichuniquely determines

the third one

H to nel aah n o f heh
Lo Exec ladly int o

His a maximal abelian subalgebra andso this restricts elements of H to have zeroes off the diagonal

we can then see that theonly other conditionon thematrix is thatit has to be traceless
and for that we can choose an an and these determine the third diagonal entry
ai azz so dim4 2

Den 4.13 The x string through B is the largest arithmetic progression

P 99 p p pa
a is a root

pis a weight

forms These are p aisuch that they are all weights
iggggrfg.ms it to where ie a it

B weight Pig as above men

s are linear

pix
Iq Metra
rÉMatra

for me La Lay

b if O UECla L a then 2 a to

c La La to






































































































































clauselats
proof InnnetermtsbianYsn

since a eyesand

bytheabove

a d

a let Me IIalptra be a subspace of L So La M EM CL a M EM ercaauyercaacey.at
erccady.az
arcadyaataaaaa

let U Lie subalgebra generated by La and L a Then ad u m EM streadyadttrcacitady

o
Take nella L a then see u So adlai m M M has trace 0

But tradee Im I mptra Pera x Hence Émetro Btr x 0 Rearranging gives are q re q
see proofof lemma 4 iza f argument t fait that ne cha l a e la a Lo p

b If u to e Cla L a and xox o then from a pix 0 for any BEE But 4.129
implies that x o E saysif o heh then axe I s t ath to

So xox to if x o e Cla L a

Yakarwriesult t.it
c for o ve l a we have Chiu ath v for any nett by definition choose ue la

ve L a with Cair adto by 4 iz f And choose heh such that acn to
Set x can E Cla L a

Yen
cash u even since c is invariant

ach curvy
so x to u to4.12ftsaysthatfor

any uela over a
s t can to toseethat

Lanceagog

t have toshowthat one
otherwisecu.us o
st un to

can o ther
tree a netal n to since it n o

Lemma 4.15
set ofroots

a ma I t a ed and if na e'd for some nek then n ti

b pix EI atx v n E C la L a

c if dimll n dimH r then of roots 2s n r and res

proof ucla rel a set can autoand x can

a Take u v n as in the proofof 4 14 C and let B lie subalgebra generatedby usu
N subspace span of V H and E Lrar o

remember xecu.us e Cla L a e la a lo HCain E H Eo Lra EN

CuN E Ev H E Cu Lra E N

SoCBN E N Then a Caius e Ba consider ago yn n n
see previous notetosee
why treadx o

O trad a n 26 I Mra race
I I f era usinga stringthingrestartedto n

remember ma dimso

But 2121 0 by 4.14 b so Formia I ta EE Thus ma I and ra is a root for r o
r ti use the fact thatitsa positive sumand weknow man since o tu e la

Repeating for a we get ra is a rootfor roo re i






































































































































b follows from a and 4.14

pix Iq Metra
rÉgMatra

for me La Lay

so pun Jami E a E

c Follows from a and 4.12 g

We have a decomposition L Lo La and dimly dimly Eggdim la

Now Lo H dimico dim H r Also dincha n for every not and if a ed then aed
I dim la 2s where s of positive roots so

n rt as as n r

Remark The lie algebra B in the proof I see and you can use representation theory ofsea
to prove the last two lemmas

Lemma 4.16 if a e I and ca e I with C ed then c It

proof set p ca Take p ga B pted to be the a string through p Choose of E Crail a
Then deal to by 4.14lb Then pix q plicata by 4.15 lb so c

If a p is even then we're donebyprevious lemma
if a p is odd then take r z le att ex and a ere p So ptra is in the x string
through B Thus Ed is a weight since ptra a

contains ta ace y

de with ex

by Lemma 4 is a

Define for each heh ht by h a Chic ad then Thus hteH't and h h is linear

by linearity of C ad The map is injectiveby nondegeneracy Hence its surjective finitedimspaces
and we canwrite ha for the preimage of a en

We can nowdefine a symmetric bilinear form on Ht

Den 4.17 a B C ha haad for a.peHt

where chain ace hthit Chin ad

hp n pix
then






































































































































we can choose ea e α with eatla e a El α so that Cea e a ha and

by invarianieproof for net cease din

ge.a.sc

nth attullal thin thth

ad a e a acute α
Em e a alone a

e a x acute α

a canchoose ex e a s t Cea e a ad wog
Chain byuniqueness

Lemma 4.19 For α.pe I
c killing form
on L restricted toHa

4 E
cnn.s acnv.ie

4 E.fi cnt.na

14 Chahp EQ αpete

id Va.pe β 244 L α

and the corresponding statements wrt cap g
b if otnecla.la then an to

proof Consider cha ha ha to by 4.14 b Hence

a
244 2C P ex for α string.ttY9hr

b for a yet ca.gs pg β
aply by 4 ua and 4.159 so

ha ha β β ha p hp.hn bydfnofhp

So this says that Chaina Chp has EChp hα
ha ha

Henie we can multiply show

Cha.hn chaha

and infast 4 I er






































































































































c immediate from a and b
I think its supposedtosay β

2 91α
d β 24 α β P α fromproofof a but still β tip alata string throughβ

Note that β α stringthrough β

Define IT Q span of hx α EI EH Since hx c I span the complex vector space we
can take a subset hi hr that form a complex basis of H r dimal rest

Lemma 4.20 The killing form restricted to IT is an innerproduct and hi hr is a Qbasis of it

proof The form C 7 is symmetric and bilinear and has rational values on IT by 4.19 c
Let meÑ Then

x as 441 by 4.13 a

E cha.us

Each Chair E Q and so amiss o we get equality only if eachchain a o for every e I
Thus n 0 aninnerproduct

It remains to show that each ha is a rational linear combinationof his hr But if

ha Dihi ai ee this is the because hilia io span
a need

cha his E aichi hi E Q by 4.196

Consider that the matrix chichis is a rational and nonsingular matrix since c is nondegenerate

Multiplying by the inverse of this rational matrix shows that all the ai are rational

Now we can make similar statements concerning the Q span ofthe roots usingthe symmetric
bilinear form onHt Note

H Q span of

and defines an inner product on Qspan of and a subset of thatis a e basis of Ht
is actually a Q basis of a span of I






































































































































157ROOT SYSTEMS

Dfn 5.1 a subset of of a real Euclidean vectorspace E is a finiterootsystem if
i I is finite spanning E and not containingo
Iii for each deO there's a reflection sa preserving the inner product with salat a

the set of fixed points is a hyperplane of E and sa preserves I
iii for each a.pe of Salpl p is an integral multiple ofa
in for a BEOI 2 B.a

a a
E k ax

sacmr

v Sacp p 21p.at
6 a

a tree
sack p

Pa
hyperplane space orthogonal to a

Remark 4.20 and the following discussion tellsus that the rootsof a finitedimensional semisimple complex

lie algebra give us a finiteroot system with E IR span of the roots

Dfn 5.2 The rank of a root system dime

Dfn 5.3 A root system is reduced if foreach aed the only roots proportional to a are Ia

iii iii iii minimum
Den 5.4 The Weyl group wed of a root system is a subgroup of the orthogonal group generated

theweyl groupcan beseen as asubgroup of permutationsof whichisfinite

Dfn 5.5 for a finite root system write nlp.at for Ya Ek Let 141 a a Then

x p 1211BIcos0 where 4 is an angle between a B

Then n pix 4 cosy

Lemma 5.6 nlp.alnla.pl 4cos'dEy

proof immediate

So 4cos'd can only take values o 1,2 3,4 can onlyget 4 if a pare proportional otherwise
we have 7 possibilities iff tangle ol

can have nca.pl nip.at 0 Notes
0 O E
I 1 I
I y

Bl 191
IBI lat possiblereduied

a in la J root systems
i z a Ipl flat
I 3 Ipl IT al
I 3 E IBI 53121






































































































































Example reduced root systems of rank2

y

g
arisesfrom sezxsea

Weylgroup caxca I B

p atp

arises from sesg

Wey g

dim 3 8 forroots

an

e

p Rta p 2d

a p are different lengths

a E arising fromspy andsus

p za p a

i

iii
2B132

I BE opted ptsd type Giz
arising from derivations of octonions

5 a dim 2 12 14

n'sa p p a
o p

ap are differentlengths

These are the only reduced root systems of rank2 up to isomorphism

Den 5.7 An isomorphism of a root system
E E E I is a linear bijection

such that 0101 I

note O neednot be an isometry






































































































































Dfn 5.8 a The direct sum of tworoot systems E E and Ei is E E QUOI

b A root system that is not isomorphic to a direct sum of rootsystems is called irreducible

Eg
is reducible since it is the directsum of two rootsystems of rank 1

Dfn 5.9 if aEd define the coroot a 19 Thus 12.44 2

Exercise if EE is a rootsystem then E Of is a rootsystem where LEE de É
the dual of the rootsystem

Dfn 5.10 A root system is simply laced if all the roots are of the same length

Example the only irreducible simply laced rank 2 root system is Ac

Dfn 5.11 A subset D of a rootsystem EOf is a base of OI if
1 o is a vector space basis for E
4 each Je I can be written as a linear combination

8 I Kaa

with coefficients ka integers and either all 70 or all so

Elements of D are called simple roots and the 2 where all ka 0 are the positive roots
The set of such 2 is denoted It Similarly we define negative roots Kaeo and I
Thus I Itug

we'll see that a 0 always exist

Example in our 4 examples of rank 2 a.pl form a base D

Dfn 5.12 The Cartan matrix of a root system wit A is the matrix nla.pl a peo

Example Cartan matrix of Ga

note N aid 2 Fae 0






































































































































Dfn 5.13 A coexeter graph is a finite graph each pair of vertices connected by011,2or 3 edges
Given a root system I with base Δ the coexeter graph of CE I wrt Δ has

vertices elements of Δ simple roots

vertex α isjoined to β for 0,1 2,3 according to n α plnp α 011,213

Example the Coxeter graphs of rank 1 and 2 reduced rootsystems

rank 1 Ai sea

rank 2 A A Nx p nlp.at 0.0 0
As n a β n βα 17.11 1

Be nlap.INpaI 1 1 2 2

00 Gz ncx.mnpa 1 13 3

Theorem 5.14 Every connected nonempty coexeter graph associated with a root system
arising from a semisimple complex lie algebra is isomorphic to

Ar r vertices r

Br r vertices raz

pr r 4

G

Fu

EG

Et

Eg






































































































































The Coexeter graphs are telling us the angles between the roots but not their relative lengths
Br

arrow pointing towards shorter root e.g Bz from before
Cr

Gz

For Ga Fa its usual to include the arow f

The graphs with arrows are called Dynkin Diagrams

we'll come back to the classification of Coexeter graphs when studying quivers andwe'll provethe
Theorem forsimply laced Coexeter graphs Ar Dr Eo.E7ES

for see we can define r E G a so fÉ
Consider E YeePo where Pa is the hyperplane ofSx is non empty

Pa SEE 2,21 0
Dfn 5.15
a 8 is regular if YE Elupa and thus g of g

ie 8 α to Vaed

b α r is indecomposable if it cannot be expressed as α 22 α α r α to

Lemma 5.16 let REE be regular Then the set Δ 8 of all indecomposable elements of r

is a base of I Every base has this form

Proof at each eaters is a nonnegative integral ii initiation ie iiniieii ij
otherwise if we choose a bad α with 8 α minimal so α decomposable

say α α 22 then ai 81 Then minimality 21,22 good

8 a 8 data 8 a 8,22 0 But die 481 18,21 8 a 0 Byassumption α isthe r withminimal

r α thatcannotbe expressed asanonnegintegral1incomb ofher so α αamustbegood nonneg.int incombof 40 Butthen

α a a is a nonneginttincomb of r a contradiction E

Δ81 spans Itr with cano and 8 with Ca o sospansrootsof E androotsspanE so018 spanse

b So r spans E and satisfies property ii for a base Weneed to show linear
independente Its enough toshow that when dip distinctin 410 then dip Eo we'll see howthis follows
in a little bit but firstlet's show that lap 0 suppose lap 70 Then since ap so nca.pl o

looking at the table from abovewe musthavethat either n αβ or nepal or maybeboth but
at least one wlog suppose nlp.at l Then notice that Salpl β nlp.dk β α But so permutes
the roots and sinie βis a root salp is a root β α is a root

But we know that β It or p a α BE 18 since I 8 V1 r if p.ae
181

then β is decomposable since p Ip at α since pfold similarly α p a It 8 α decomposable.E

Now tousethis toshow linear independence suppose Ʃrαα o deal and ra ER separating the indicesfor
which raso and raco we can write ƩSαα Etpβ α β Let Ʃ sad Then
e e a Satp α β 0 since a β 0 But a a 3,0 faceU bydfnof an innerproduct so

is s aihenti Fenie s.si inaiin.inaiiiiient






































































































































Nii suro I a given base choose a stc.fiiteaiinifiia fej iiiiiiii
show Δ 0181 Certainly E 81 we chose r s t 18,2170 OEA andif β It then

β Ekad for k α 70 so since 8,2 so αeΔ and at least one ka to then

tip Ena trial 0 BE 181

we also deduce similarly that I 18 8 It It 481
But Δ is a base we can think ofeveryelement in Δ a a positive integral combination of Δ and
elements of Δ are indelomposable I basisfor E Δ and in particular Δ EΔ 8
But 101 104811 dimitt Δ 0181

Lemma 5.17 For a base Δof a reduced

a Xp o and so coso 0 n a β 0 and nondiagonal entries in Cartan matrix are 0
for d β distinct Δ

b if α It and α Δ then βCΔ sit α βEdit
C Each It is ofthe form β t Bn with each pit Bi It with each pieΔ
d If α is simple αEΔ then so permutes It α tuereflected to tve exceptα α

Set p Egβ Then Salp p α

remember ixβ so α pedtorβ at αpeg

i L iii iii iii iii iii iii iii a.iniiiiiiniia.e.soa.nosonowi
same argument as b in previous lemma

b If 2β so βEΔ then Δu α would be linearly independent So aβ 0 for
some β Then α β same argument asbefore

If α kro with all Kosio then kg so for at least two 8 e Δ sine α Δ so we know that

α β has at least one ve coefficient α β EI forces α.pe It

c follows from b byinduction if β induct on htβ αEo
αpeg now

if heβ I thenβ α for some e Δ andwe'redone suppose it holds for Ken For hep int

by b α eΔ suchthat β de It Butby inductive hypothesis write
β α pit tβn β pit tβntα

It β p so

then
tkygfyg.figyffd But coefficient of 8 in

so all coefficients are no and so Salp It Hence It α

The last part with p follows

Salp P 2 α But zlp.at Epa a α EtaPid E a f α α α

lemma 5.18 Δ simple roots I
a if 0 orthogonal GICE and it satisfies old I then 0520 Soca
b Let α at Δ not necessarily distinct Write si for Sai

Ifs 999
or St sila is positive then for some le ist

c If 0 St s is an expression for an element of W with t minimal then ok isnegative








































































































































pf c immediate from b
a EI BEE then so Colp sales p nca.mx off nÑpjo
So 0520 fixes the hyperplane Pa elementwise and sends a 0cal Thus 0520 1 Socal

b Take a minimal such expression with St sala negative Then for 1 act Pat Sa Sa a
is positive by minimality By 5.17 d we have Bt at

Let St i 52 Then St Sold 05.0 by Result follows by rearranging

suppose that St saldi is negative and thisis an expression with minimal length Thenby minimality
si Sala 20 is positive tict say pit si saldi Then pit is positive for ist and
negative when i t Note that pot St i Saldi is positive but pet St pt is negative
Now St generally reflections permute It19 5 sothe onlyway that st mapssomething tve to ve
is if βt at let St 1 si Then la says 0s o l soil solar Sae St

Then rearrange

Lemma g19 W W E fluff
generated by thereflections sa c

a If 8 is regular EE then o EW with 0681,9 0 c Δ I e W permutes

the bases transitively gofromone basis toanother
b for EI then old EA for some sew
c W Csa for EA
d if Δ Δ for oe w then o 1

proof let W Sa αeΔ C W
First we'll prove a and b for W

W is finitesothis is possible

a Let p É α and 8 beregular choose oew so that 0101p as large as possible Thenfor eΔ
we have so e w So 0101p Sadr p by maximality

0101 sap so preserves innerproduct

5.17d ocr P ocr α

note that equality would imply 0 YePo1cal which contradicts regularity

Also 0 Δ is a base with r α 0 α e o A Sothe argument of 5.16c 0 Δ Δ 8
Since any base isof thisform Δ81 by 5.16 transitivity onbases follows

b It suffices to show each root α is in a base andthen apply a So choose die Pa αPβ

Let E min 118.1111 β ta Choose 82 with Oc 02,2 E and 1182 β CE foreach β α
Define 8 81 82 Then octraise and 1 r p E So α is an indecomposable element of It 81
and hence Ocr 81,21 0 since her

c It's enough to showforanyroot e I Saew Findbyb some of W with a c Δ Thus
Socal EW Butby 5.18 a we saw soca 0 15 0 so saew






































































































































d suppose d is false I oft such that co o write o as a product of simple reflections in the shortest
possible form This contradicts 5.18C omust be asshort as it canbe lie aid
010 o sends toe to toe ifminimal then s181 says sends tue to ve

Theorem 5.20 not proved here Wto gypsy
522 1 saspmy 1

orderofsass

with MiaB1 2,3 4 or 6 dependingon the

anglebetween a p E E E 5g

Construction of Root Systemsfrom Cartan matrix Dynkin Diagrams

Strategy we'll need the following machinery

er en orthonormal basis in Euclidean space
I integral combinations of fei
J a subgroupof I
a y fixed realsso with 3 1 2,3

Define I des 11112 x or y

E span of I

we need that each sa preserves length and sa I I

Note if J E E Kei and a y e 1,2 then this is satisfied

Ar rat Take nerti and I Emei ne Emei t Let I a EJ 114112 2 f e i e i j
Then ai ei eiti are linearly independent andif icj ei ej É ok So di is a base for d

We know ai a o unless j i itt
ai ai 2
ai ait 1

So I has Dynkin diagram of Type Ar Each permutation of 1 art is an automorphism of I
and hence W E Sui

Sai switches i itt and weknow i it generate Srta Thisis the root system of seven

Br r 2 set her J E Kei and of des 112112 1or a tei te ite i j

Let ai ei e it for ier and are er Then ei Ifk and eitej isthe sum oftwo such
expressions ei ej É d so basically ai ear is abase This corresponds to a Dynkindiagram
oftype Br associated with so rt odd

Action of Weyl group WCO gives all permutations and switching of signs of er er Thatis
W E Er x Srnormalabelian

subgroup






































































































































Cr re her J Ekei I 5 112112 2 or 4 zei teites i j which is
the dual of the system we had for Br Base is en ez ez es er er zer and
Weyl group is same as Br arising fromspar

Dr ray J Ekei I EJ 11 112 2 teite it Base αi ei eit i r

and an er i ter Simple reflections cause permutations and an even number of sign changes

WCI split extension of C by Sr permuting them index 2 in group we had before
Arises from soar

Eg n 8 set f ei J of Eciei each iciekandct cic.az

Then I EJ 11 112 2

teitej.it u EC1 ei Eki even

set α eites Eei

α enter α ei i ei 2 for is

Et EG Take I from Es and intersecting with subspaces

Mayst Inch yet

for suitable h y obtain a αa and α α6 with Dynkin diagrams Ea Eo

Fy n 4 set h entertes tea 3 Ekei uh
11 112 1 orz tei teite i t.ie tie tie key

Thus ez ez ez ex ex e ez e e4 form a basis

Gz n 3 J Ʃ Kein center test Then I E 112 2 or 6
i e zei ej ex for injikdistinct

base α e ez.dz ze testes






































































































































161REPRESENTATION THEORY OF SEMISIMPLE COMPLEX LIE ALGEBRAS

Theorem 6.1 Weyl Let L be a semisimple finite dimensional lie algebra chark o Then all
finite dimensional representations are a direct sum ofirreducible ones

Definition 6.2 A representation is completely reducible if it is sucha direct sum

Idea saywe have a repn p L Endlul then pis said tobe completely reducible if we can find
some wi wn s.tv W town and Pl Endlwi is a sub repn i

Lemma 6.3 The following are equivalent
1 all finite dimensional representations are completely reducible
2 Whenever p L Endv with WEV and dimUw 1 and PCL V EW in particular
W is invariant then there is a W with V WOW and p c w EW

3 The same as ii but with the restrictionof p toW pw Endlwl is irreducible

pf 1 2 3

3 2 assume 3 tobe true and prove 12 byinduction on dimer

Ein vii win i aiiiiiii.in ew.iEY waswiY.mf
Inductionyieidsw.su

Induction yields W U W hence v W w

If w so then this is obvious Same goes for dimwit since then w is clearly irreducible and
so we can apply 3 Now suppose dimwit If wis irreducible then by 131 we have 121 now
suppose that w is not irreducible Then Oc now sit placuleu now aim dimwt and
therefore we canapply our induitive hypothesis

Hence p 1 E pill E 0 since pc v W byassumption Hence p 1 w E U Now we
know that dima dimw by assumption so dim aim 1 By induction we have that
w now and what o Also

dimew dimini
if L ath aimu aimu
dimv dimutdimu dimv

so antually v w w






































































































































21 i suppose p L EndA with BEA andPCL A E B Note change of letters we'regoingto

apply 12 to a different representation

Let u L EndEndAl n is or pix 03
Define v OfEnda OcalaB ol are for scalar a and W OeEndA OCAEB 01,3 04
Note that dimYw 1 and UCL view so penxwi penwit osince

reggstayaident

Applying 121gives complementary W with Mcc wi Ew fan'd É wow
new with wise also uaxwiewnw.co It Ifftp.ne.am

and thus w is a L endomorphism of A and PCL kern e Kerw But kern713 0 since
w l 213 So if aea then whaleB and will w a to so i wi a E kern and
a wical i wi a A B kern I e kern is complementary to BinA

It suffices to show that if p I Ender is not irreducible then V V ve vineto as l modules
If pis not irreducible I we v such that pic w Ew Look at Enacul it gives an L rep

9 L EndEnder in adps4 pea 3via adopt let
us g o e ending one w Olu saw for some

Us Mo EEndv

look atMo Soeenacv o u Ew Olw o
aalpia actingon

Endcul

Then certainly not us to is someal Since plur EW us and Mo are fixed by
adopt in particular adopt L Ms E Mo

clearly Sino k tthe field so dim no t Hence we're in the position to apply wegetthat
in Ms there exists a tomplementary c module m to Mo suchthat us Motu

d FEU now certainly I an endomorphism f emssit wog flu Iw and since f 4 no itmustbethat

fam now Kershaw o trivia

Ige Iggy
that f t since w

Hence flav fl o Hu f u e kerf Hence for any rev we can write

andso kerf is exaitly a complementary L module to W sothat V W kerf as c modules

Proof of 6.1 we aim to show that 6.3 iii holds consider a representation p L Enders we v

dimYw 1 and p c view with Pw irreducible We aim to show w hasa complementary
invariant subspace

Since quotients ofsemisimple lie Algebras aresemisimple corollary of 3.13 we may assume that kerp o
i e pisfaithful Let c i p be the trace form of p see 3.2at






































































































































This is nondegenerate let It bethe orthogonal space wit c i p Then it is an ideal by 33 ii
Moreover Lt is soluble since trepalply o f my elt and we can apply Cartan's solubility criterion

to plot to get plat is soluble but pis faithful

But L is semisimple so all soluble ideals are zero Using nondegeneracy I abasis mi an of L

Y yn ofL such that Cni y p Sj Define Casimir element of representation p by
C I plailplyi E Ender

claim c commutes with pll

Thus here is invariant under pll we'll show that V wt here Since pll r Ew we have
v e w from denofc We're supposing that puts irreducible

PCL CCW E CCW

so w W oro by irreducibility But w o 2 0

o tree
Erl Epixisplyi
I trepexilplyil
E Cui yi p
dimV
to E since chark o

So w W and hence kerchw o But Ccu Ew andso kero to So V W here
as desired

key points of proof
111 to show complete reducibility want toshow that if p c enacul a repn with we v s t pollutew
dim Yw L and Pw L Enacu irreducible then I complementary w sit r wow andp e whew

121 wog assume p faithful Show c i p nondegen since plot It soluble L semisimple

I c nsp nondegen a bases ni inn y gn sit vi y sij

4 Define Casimir ele c I politely e enav

H show here is the w we are looking for
Show pea commutes with a Kersal preservedby pills pullkers e Kerce
show herin w o then clue w t this fact a V kerstow






































































































































Casimir Elements

p L Ender suppose c s p nondegenerate e.g as in proofof Weyl's Thm 6.1 or

killing form of semisimple lie Algebras

ni an basis for L and Yi Yn dualbasis it nondegenerate form ni y p Sij

Let C E Plaidply CEndV

Lemma 6.4 Cc plz 0 V TEL commute in endu I.gg t's

pf Ccplz I PCailplyi Plz epeupcyl.pe

Epenilepay Plz I epeni plz ply usingfactthat c pe papalits a derivation
peapappy pinfall

WriteCy z E aijyj and Cni z I bijnj then

ay Yi Z Nj p Cnj Yi 2 p by invarianceof form

and similarly bij ni t yj p Yj hi t p by invarianceof form

aji

Hence Cc Plz Ijptiplyjlaij t Igplaitplyilbij o

In fact thedefinitionof C is independent of choice of basis but does depend on the trace form

write Cni t and Cui 2 in terms of n andbi respectively note that coefficients are antisymmetric so
the sum vanishes






































































































































Universal Enveloping Algebra

Thestudy of the representation theory of lie Algebras is sometimes more easily understood bydefining an
associative algebra UCL known as the enveloping algebra of L

Dfn 6.5 UCL is theassociative algebra withgenerators X EL and relations

Iggy Egg
for XMEl

ofxxin
This is equivalent to taking a basis Xi Xn of Land using generators enveloping

Xi and relations Xix XiXi Xi Xi together with linearity condition

Iggy agate
and addition in Ucc is thesame as in L

Example if I is abelian then UCL I acxi Xn where Xi Xnis a basis of L
a polynomial algebra

Because I abelian F xx of XY XY X O XY YX polynomial algebra

In general you should view the envelopingalgebraas a potentially noncommutative polynomial algebra

Theorem 6.6 Poincaré Birkhoff Witt PBW 41L has a basis as a e vectorspace x Xena Xnmn miens.o
Where Xi xn is a basis

PBW is fora totallyorderedbasis x exze exn Look at canonical monomials

The reason forintroducing the enveloping algebra is that there is a 1 1 correspondence between

p L End
a

u is a neo modulerepresentation
F 414 End r

F Uco Endou Then V is an abeliangroup with a representationof ucl over it For n ouch the actionof
n is themap n v finder whichisenoughtodescribethemodulestructure of vover Ucl

Note The Casimir elements we produced are images under p of an element ofUCL of theform
Exiti where Xi are abasis and Yi is a dual basis of L wit the nondegenerate form

The proof of our lemma shows that these elements E ii die Cintra in iii In particular if
L is semisimple andso the killing formis nondegenerate we produce a central element r Exiti

where the bases are dual wit the killingform Then UCL has a nontrivial centre
assuming pis faithful a p injective

Now return to the representation theory of semisimple L Take a CSA H and roots I anda
base of simple roots D ai ear We have positive roots It Bythe Cartan decomposition of L
we can consider the sumofthe weightspaces corresponding to positive roots

N Igt la and N E L aneat




































































































Denote B HON the Borel subalgebra Notethat N is a nilpotent subalgebra andso we havea decomposition

N OH N N B

Foreach a e It pick na e la and ya e L a then na ya E La a Lo H
Write Li for La for simple roots di ni for nai etc

Consider a representation p L Ender

Dfn 6.7 Let Vw veV pch u wear the't betheweight spaceofweight w where went

This extends the definitionofweightspaces of L arising fromthe adjoint representation to general representations
We define multiplicity tobe thedimension oftheweight space Theset of weights where Vw to are the
roots of V

Notice that if dimcut is finite then I weight spaces because H is abelian and sothere are
common eigenspaces for H in V the weightspaces

Lemma 6.8
a pLaVwE Vata if weHt de I
b The sumof the Vw is direct andis invariant underpal
c assuming L is semisimple if dimculco then V directsumofweight spaces

pf a For ne la veVw heh then pch pix ul pixpinter t plch x v

penwantu pladchia v
wchlperilous peach a v wenttach penal

b Thesumof common eigenspaces isalways direct for commuting endomorphisms The invariance comes from a
observe that L HE a clearly invariant under PCH

Don't know about thecommuting endomorphisms thing but youcan showthat if w andwe are weights

with veVw nVaz then v o

c If Uwere irreducible then thedirectsum ofthe weightspaces is a nonzero invariant subspace and hencethewhole
of V For general fin dim V we canuse Weyl's thmsothatV is a directsum of irreducible

Dfn 6.9 v is a primitive element ofweight w if it satisfies
i v to has weight w
Ii plea r o y a eg

we veVw

condition ii is equivalent to potato
Idiot

saysthat basically v is annihilatedby N penny o

part o

If V is primitive then pB u is I dimensional Thatisbecause B HON and pB plHON PCH which

is just scalar multiplication Thus the primitive elements are the common eigenvectors forB

if V is a common eigenvector for B then its killed by B N since H is a maximal
abelian subalgebra and so ii is satisfied

if u is a common eigenvectorforB then t meB peacu Av where an dependson ourmap Thenforany
n yes p ex.gsCul EpcalpcylJlvl anayv ayaxv 0 so v is killedby B ChonHON CNN N



Remark any finite dimensional V contains a primitive element by lie's Theorem 2.181

Proposition Gto let v be a primitive element of weight w and let we plllcul.me Yi E L pi
i W is spanned by ply m piya Crl where the pi are thedistinct tve roots and micks
ii the weights of W are of theform w I Piti where a art is abase
with Pie 71,0 and they have finite multiplicity weight spaces are finitedimensional
iii w has multiplicity I and the weight space in w of weight w v
in Pw L Endw is indecomposable I e W cannot be expressed nontrivially in the form of a
directsum w we with Wi invariant

Switch to talking about UCL modules
d Eh

ya ya El
Ha ha

proof maybe wiog say i eEndou with trivial repn
i basis for L na Ya basisof H Then the PBW Theorem 6.6 says that

4isca says La one aim

UCL EYp Yp U B

and the sum isdirect Consider W UCL ul But v is a common eigenvector for B and so

W I 4p.m 4pm v t

ii By 6.8a Yp pi u has weight W ÉMiri But each pi is a positive integral combination

of the simple roots so this weight is of theform w Epidi with piekno Notice that
W EPiti can only arise from finitely many w Emipi and so the multiplicity of w Epi di is finite

iii w Emjpj can only be w it all the mi are zero so theonly subspace in t of weight w
is cu so w weight space is u with multiplicity 1

in If W W We with Wi nonzero then Ww Wiw waw But Ww is one dimensional andso

one of the Wi w o and v has to lie in the other But v generates w andso one summand will be
the whole of W

notnecessarilyfinitedimensional

Theorem bill Let V be a simple UCL module I p is an irreducible representation and suppose V contains
a primitive element v of weight w

a v is the only primitive element of V up to scalar multiplication
b The weights of V have the form W E Piti with Pi E 7110 Theyhave finite multiplicities

and w has multiplicity 1 and V is a sum of the weightspaces
c For two simple modules v andve with primitive elements v and ve of weight w and we respectively

then Vi Ve iff wi wz

Den 6.12 The weight w of the primitive element V is known as the highest weight



proofof 6.11 Apply 6.10 Since U is simple V W UCLv andso part b follows

a Let u beanother primitive element ofweight w Then w w Epidi for some pieKoo But
also w w Zaidi for some ai ex o This is only possible if qi pi o

w w and so u must be a scalar multiple of V theweight space of w us

C If V Eve then w wa the highest weight for both conversely suppose w wi wa

set V V vz and vevitove The projection it V laundering c mong homomorphism IT w W Ve
W UCLv Note that Tcu vz and ve generates Va so it w is surjective
Note kertlw V nw E V However the only elements of weight w in v are the scalar
multiples of v But v4keritlw So Ker't Vinw does not contain any nonzero elements

of weight w and so VinW EV By simplicity V nw o andso IT w is injective
I e W Va via IT w Similarly W IV V I V2

Theorem 6.13 For each welt there is a simple UIL module of highest weight w

Sketch of proof

Return to sea x 8 Y 981 4 169

Proposition 6.15 Let U be a U sea module with primitive element v of weight w
set en hY r e o

Then i Hen w Zhen

ii Yen ntilent
iiit Xen w ntl en i kn o

pf exercise

Corollary 6.16

Either a en n so are all linearly independent
b the weight w of V is an integer m o andthe elements er em are linearly independent

and em i o

pf almost immediate



Corollary 6.17 if V is finitedimensional then we must be in case b of 6.16 The subspace

en en is invariant under L and we have the simple Ulsea modules we met earlier The
weights are m m 2 m 4 m each with multiplicity 1

7hm 6.18 let we Ht and let u be the simple all module of highest weight w Then

V is finite dimensional E V a Edt Wcha E 71,0

proof
if u is a primitive element for L then it is primitive for anyof the subalgebras

Remember Xa Ya Ha sea toed
But our knowledge of representations of sea
if V fin dim then Wcha E71,0 by 6.166.171

not proved here

Den 6.19 The weights satisfying the condition in Theorem 6.18 are integral They are all positive
integral combinations of the fundamental weights with Sig

recall ha hi for simple roots ai

The irreducible representations with highest weight being a fundamental weight being a fundamental

weight is a fundamental representation

Example Sen roots are linear forms

Lij ai a

Eai o it

Base di di.it

hi i i ti Id Xi 1D
Indian

Fundamental weights

with ait ai

where h is a diagonal matrix



I FINITE DIMENSIONAL ASSOCIATIVE ALGEBRAS

Example R MnD nxn matrices over a division algebra D e.g D 1H

right ideals are generated by amatrix A

Then AR B columns of BE rightspanofcolumnsofA

In general a right ideal is of theform

B columns ofB E rightD subspace ofpan
spgerstwitnothenties

Similarly for the left ideals

A left ideal is ofthe form B rows of B E leftD subspaceofspanof rowvectors

The only two sided ideals are 0 and MnD Thus MnD is a simple algebra

Den 7.1 R is a simple associative algebra if its only twosided ideals are 0 and R

Example KG k field G finite group

k vectorspace with basis labelledbygroup elements gear

Eagg Engg Vg9 where Vg EgthUk

Dfn 7.2 The Jacobson radical 3113 is the intersection of the maximal proper right ideals

Note I is a maximalrightideal E II is a simple right R module

Suppose that II isnot asimple right Rmodule Then I aproper nontero submodule J Thepreimage of J under
thequotientmap is a proper rightideal of R containing I so I is not maximal

suppose I is notmaximal Then a rightideal J ofR containing I The quotient map9 I R'sthen has a nontrivial
kernel which is also RII ButKerce isalways a z sided ideal of II so II is notsimple

Let M bea right Rmodule and meM Thenthe annihilator of M

Ann m reR mr o

is a right ideal Fut not necessarily a z sided ideal if SER reAnnem then mrs os o rseAnnem

However AnnaM metAnnam ann ofmodule is a 2 sided ideal

let A Annam Let rect SER Then Amen mr o mris o mers o f mem rsed rightidea
But Mis a rightmodule so tser ifmeMthen msem so if red then kmem ms r o misri o

sre A leftideal

If M is simple then Ann m m 0 are maximal right ideals since MR M Sowe can

see that JCR AAnne M
rightmodules

2 sided ideal
msimple



We cansetupa map f R M rent Then MR M since mto and is simple and MR is an
idealof M In particular Kerce annem Now ME MR lannelm But M issimple so lannizcml is
simple so Annrim is a maximal rightideal

so it is clearthen that JCR E fsimple AnnaM Tosee the reverseinclusion let ae AAnneM andlet
I beany maximal rightideal Then II is a simple right Rmodule so to he RII ha o byassumption
of what a is specifically atAnna Rt In particular Ia o a e I a eJCR

Lemma 7.2 Nakayama

freed
The following are equivalent for a right ideal I
i I e JCR pot
ii If M is a finitely generated R module and NEM satisfying Nt MI M then N M
iii Itn REI G is a subgroup ofthe unit groupof R R

pf example sheet4

Remark iii JCR is the largest 2 sided ideal I such that Itn ne's is a subgroup of R

Consequently if we defined JCR using maximal left ideals we'dgetthe same thing

Dfn 7.3 R is semisimple if JCR o

Example MnD is semisimple

FpG G cyclic ofprimeorderp then IFpG Apex xp l

3 It G x 1 mod XP 1

Lemma 7.4 LetR be a semisimple finitedimensional associative algebra ThenR is the
direct sum of finitely many simple right R modules

proof O JIRI n maximal right ideals

Consider RHI 7 Iintz x where Ij are maximal rightideals This chain must terminate

fin dim so that 0 JCR I nan men and we may assume n is minimal

Considermaps R A MI
r rt It r Iz

note f I to by assumption Indmithiemrestriction
of the map O R Ii is injectiveon ft Ij

So the image in Ii is nonzero andso it is the wholeof Me since Ii is simple

Thus Ian hen corresponds to R I 0,0 0 EOf II and we see that O is surjective
Thus O is an isomorphism as kero MI 0

Lemma 7.5 let R be semisimple Manynonzero finitedimensional Rmodule then M is adirestsum
of simple modules



proof R semisimple as an algebra R
simistitpieaidd R module now thefree r module R is a completely

reducible R module where n generators of M Define a map 7 EnR M emits mi then e is surjective and
M Yseult But quotients of iompletelyreducible are completely reducible somis completelyreducible

Definition 76 M is completely reducible if it can be written as a direst sum of simple R modules

Definition 7.7 The socle socm of a finite dimensional R module M is thesum of all its
minimal nonzero submodules

Lemma 7.8 Socm me M mJCR o

proof each minimal submodule M of M is simple and is Ann m for any meM mto
so JCR E AnnaM demAnnam Thus JIRI annihilates M and therefore socm

semisimple and i a directsum of simple modules So MR E socm
É

II If
minimal

Definition 7.9 The socle series of M appears in R fp
Anniem
ul

AnnieM

socman sums

simple anas m

O E soco m s soc m e if soc m M
girlsannalm

Remark 1 Theseries must terminate at M
4 Soc m mem my o

Proposition 7.10 Let R be a finite dimensional associative algebra Then JCR is nilpotent
i e Ime k o s t JM o

proof let 7 3431 Consider R 7J 7327537 This must terminate Th Th for somen
So the socle series must terminate so R soonR for n Then J annihilates 1 and so
Tn O

Now consider the semisimple quotient JCR Set TCR o and consider the endomorphisms of
RR Ras a right Rmodule

Lemma 7.11 Schur's Lemma

Let S be a simple right R module Then Enda s is a division ring If S and so are
non isomorphic simple R modules then Home Si sa 03

Note S is a left Endres module



proof Let 0 S s be an R module homomorphism Then either 015 o i e 0 0 or OCS S
using simplicityof S Furthermore Kero is a submodule of S and soeither Ker0 0 or kero S
So if 0 to then 0 is bijective and has a right and left inverse
Thus Endres is a division ring

If S Sa and p S sa with 0 to then kero o Imo Se and
0is an isomorphism E

Lemma 7.12 Regarding R as a right R module RR then EndRR ER via multiplication on
the left by elements of R

proof OE EndRCR then 0 is determined by 011 The map End Rr R 0 011 is
an isomorphism noting that multiplication by 011 on the left isthe endomorphism 0

Theorem 7.13 Artin Wedderburn Let R be a semisimple finite dimensional associativealgebraover
a field K Then R Ri Where Ri MnfDi for a finite dimensional division algebraDi
and the Ri are uniquelydetermined R has exactly r isomorphism classes of rightsimple modules
Si and Di EndaSi and dimpilsi ni

Furthermore if K is algebraically closed then Dick ti

Remark AG is semisimple for a finite group andso the theorem says that GG is thedirect sum of matrix
algebras over E where the number of matrix algebras is equal to the numberof simple modules upto iso

corollary 7.14 if G is a finite group Z EG is an r dimensional e vector space and r of isomorphism
classesof simple modules of conjugacyclasses

proof any class sum Egig E Z EG Any element of Z EG must be a linearcombination ofclass sums

Theclasssumsfor the various conjugacy classes are abasis of 2 ea so dim 2 EG of conjclasses in G

But AW 2 EG E Z Mnd and 2 Mna set of scalarmatrices

so dim 2 AG of direct summands of isomorphism classes



proof of AW

7 5 R is a finite direct sum of simple right modules Group those that are isomorphic to eachother

Then RR Si Sin 52,0 San to so that sin Sie bit sin sie if i j
Let Ri Si o sin Thus R Ri Now let s be a simple R submodule of RR Consider

projections Tik R Sik restricted to s By Schur's Lemma Tintsis either zero or an isomorphism

Note that at least oneofthese restrictions must benonzero So Tik s is nonzero forexactly one i

and possibly various kl andthus S hasto lie in Ri Hence we deduce that Ri is the sumofall
simple submodules ofRRwhich are isomorphic to Si and i is uniquely determined recall Sie Si fl

consider End Ri EndreSi Sini Mn Di where Di Endr si by 7.11 Schur In particular Schur

saysthat Di is a division algebra

Remark OE Enda Si to Sini is representedby a matrix one where Ome EHom sie sin However

a Enda RR by17 so
R E

f fomn.cat o

With zero blocks since Hom sinsie 0 if i j

It is left to show that dime si hi Consider Mn Di It breaks up as a direct summand

p

of simple right modules T OF i
Hence dimp si hi

zeroapartfrom

Example G 53 Kan algebraically closedfield Let g a transpositionand n a 3 cycle In chark O

I 3 simple modules upto isomorphism 3 conjugacy classes

let U trivial I dimensional module where gh acttrivially
uz g transpositionacts like 1 hacts like ti I dim
Us K with gacting via ft and h Tt 2 dimensional representation

su g

rightmodule firstrow as

g

d
un u v

h uts u v
u u



In characteristic 2 T to mod 2

Is is still simple 2 dimensional

This gives 2 simple modules so Artin Wedderburn KG Teka I directsumof matrixalgebras mnick
Where ni dink ofthe corresponding simple modules

so Kalika Mittens ka b

However 8 1 th th't g ight gh sum of all elements This is central in KG and 82 0 in KG since
chark 2 82 62 o But 8central 8KG is 2 sided ideal nilpotent so Oka eJCKG
so dim Ilka 31 951kg Milk toMack

JCKG SKG

And soc ka meKG n3CKG o u 28 01 Notice g ie sodka and h lesoc ka Hence

soc ka kercKG K gpelement I which is an ideal of codimension 1

Exercise do samefor chars T I are nonisomorphic 2 simple modules buthis is no longer simple
Find dims 4 and kGlsckalIMiCkl m.ck



I QUIVERS

Definition 8.1 Aquiver Qis adirected multi graph with vertices labelled by i and arrows i s

There is no restriction on of arrows between i and j wealso allow loops

Definition 8.2 A representation M of Q is a direct sum of vector spaces mi tomi where i is the label of
vertices together with linear maps on mi m for eacharrow 3

Example

ima Mi k on on are zeromaps
Mz O

Definition 8.3 A morphismof representations is a collection of linearmaps Mi Mi which commute
with the linear maps representing the edges

Definition 8.4 A path of length es I is a concatenation of l compatible arrows For an arrow i i
candefine its source as i and target as j Twoarrows are compatible if the targetofone isthesourceof theother

eg o o o o path of length3

Apath oflength o is just a vertex

Definition 8.5 The path algebra kQ is a k v s with basis givenby thepaths and the multiplication
is givenby concatenation of compatible paths If twopaths are incompatible thentheir product is zero

Example

9

paths of length o er ez
1 n y
72 0

products ein se eny y een o ezy o
ne o ye o nez n yea y

ny yn o e er er er erez ere O

Note paths of length 0 corresponding to vertices give idempotents

Lemma 8.6
al KQ is finite dimensional Q is finite and it contains no directed cycles
b If Q is finite then kQ is finitely generated

pf a ko fin dim I only finitely many paths

b note that ka is generated by e corresponding to vertices and u corresponding to edges

In fact the converse of b is alsotrue



Suppose M is a representation of our quiver Q M Mi and if anedge it i then n actson
Mi by applying On

Thus Mi can be thought of as a ka module We get a correspondence

ka modules I representations ofQ

Note that there are simple modules Si representation k atvertex i t all maps are zero
o otherwise

They are nonisomorphic

Idea Generators of KO are venire Seis and edges Note that eje Si and nei n
if source of nisei and o otherwise writing composition reading right toleft to reflecttheiraction
as maps The identity of KO is est ten By this ejei Si fast we have that u decomposes

as the sum
v t.ee

And from this we canrecover theaition ofthe arrows edges Say i s then we canwrite
a a einei Then eine Vi eineie v ein v e eju so we can thinkof
n as a linear map Vi Vj

we can gather what simple module would look like If we had say Vi and u bothnonzero

have one nontrivial bi and certainly restoreu o all maps are 0 to Vi to be a

i ii

simple KQmodule Vi K

The fact that they're all distinct nonisomorphill if s and s say s si and s si then
v I Vi sincethis iso must respect the decomposition si si but it soE

Example
9

e ka es reptn M k Ma Kotk On m me

a co

Example Q finite no directed cycles and simplemodules as describedbefore previous example Then these

Si are the onlysimplemodulesof KQ

Tosee this consider s Annis k spanof paths of length I

then Jr k spanofpaths of length or Hence anew s t J 0 I is a nilpotentideal

So J E JCKQ since I is nilpotent Clearly JCkQ EJ from the definition of JCka and
hence J J KO

Note ka É É But also Q J 9151kg whichis semisimple so Artin Wedderburn saysthat
the decomp KOJ is unique and of summand uniquely determined corresponding to the iso classesofsimple
modules As the sum has vertices summands andwe already have vertices distinct simple kQmodules
Si these up to iso must be all of them



Definition 8.7 An algebra R has finite representation type if thereare only finitely many indecomposable

modules upto isomorphism

Example Q
my

Representation Mi k On Mi Mi a am for a fixed mek
This is clearly indecomposable 1 dimensional and are nonisomorphic to those fordifferent u

So if K is infinite then kQdoes not have finiterepresentation type I infinitely many repens

Exercise remove k finite restriction

Exercise showthat if Q contains a directed cycle then I infinitely many indecomposable modules whether
K is infinite or not similar cognition

Exercise Q IF Showalso has infinitely many indecomposable representations upto iso

underlying graph

Theorem 8.8 Gabriel 1972 let k be an algebraically closed field A connected quiver hasapath algebra of
finite representationtype if andonly if its underlying graph ignoring directions is of type Ar nil

Dr re 4 Eb Et Es the simply laced Coexter graphs
iiiiiii

Remarks 11 this is independent of the direction of thearrows

Br Cr Fa Ga
131 the more general theorem is a classification of positive definite coexetergraphs

Given a coexter graph we can define a symmetric bilinear form on the IR span of the
vertices vi vn say which form a basisfor this vector space

Ei
2 if i j
Iti

where ti of edges disinfecting initiovertices

If a coexeter graph arises from a root system say D a art of rootsystemof then

Gi 2Cai a

Killa
symmetrizedversion
ofthecartanmatrix

Recall that rootsystem of gives coxeter graph with vertices the simpleroots and
of edges between a andp givenby nlaiplnlp.at

Recall nip at 2 11
nla.plnipial 4 dirt trial Hail



Note that this matrix is the same as theone representing the inner product wit basis Fil di Et
This matrix is therefore positive definite to semisimple ie algebras give positive definite coxeter graphs

Definition 8.8 A coexeter graph is positive definite if the symmetric bilinear form defined bythe qi is
itselfpositive definite

Lemma 8.9 A connected positive definite coexeter graph with r vertices has that the number of
pairs of vertices joined by at least one edge r t

proof Let e of pairs of vertices joined by at least one edge Let v I Vi Then v40 since basis

and so

ocq v.v art 25gEii
x

But for i j distinct qi so and so r if ai E Ii z e ee r i
nasattests

But the graphis connected and so we must have ex r i e r t

Definition 8.10 The dimension vector of a representation

I dimMi v E IR i vertices vi ourbasis E IR

Theorem 8.11 Gabriel suppose the underlying coexetergraph of a quiver Q is a simplylaced coexeter graph
of type Ar Dr Eo Et Es Then

the isomorphism classes of indecomposable representations a positive roots in IR wit a a or

I k a
simpleroots

M E i
dimemi

Intthistobetveroot

Proof of 8.8 It makes use of some reductions

1 Given a quiver Q remove some vertices and any arrow with source or target among the
removed vertices to give quiver Q

Then if Q has infinitely many indecomposable representations up to iso then Q does too
We could put the subspace o at any of the removedvertices and the zeromap
representing any removed arrow

Then Q has fin rep type Q does too



2 Given Q contract along an arrow and identify the source and target ofthe arrow to getQ

eg i a contract along n

Given a representation of Q we can form arepresentation of Qby putting the same vector space at
the source and target ofthe contracted edge and represent the contractededge by the identity
map So Q fin rep type Q does too

On a an ne k infinitelymany

Oy a

I
if

ones

n

We can use these two sorts of reduction todeduce that theunderlying graph of a quiver of
finite representation type has to be a tree withoutmultiple edges

Now assume T the underlying graph of Q is a tree As before we define a symmetric
bilinear form on IR with basis vi ur corresponding to vertices l ir we defined wit

I if i and are adjacentin e

p
going e showthat if we havea quiverwi
finrepttype thenbilinearformmustbetvedef

Suppose this symmetric bilinear form is not positive definite for contradiction's sake Then I nonnegative 1
integers ki sit q e e so with v I Kivi 0 onunde

grip

Evaluating a un gives 22ki 2 Eli kj
ing

So 91412110 22mi E Ey kill

Thus 22 Ki E 2 Ekik where is are adjacent in t So

not double counting insumEki e E kik

stops us doublecounting

Let Mi be a vector space of dimension ki and M Mi so u Kivi is thedimension rectorof M
Define a linear map Mi Mj to represent each arrow i j Consider isomorphism classes

of such representations Two representations are isomorphic there is an automorphism in

TGlMi taking one to theother Then if fie allMil

Mi
O

Mi

fi fi

bottom man betterbe f oof i

g

I
O

d

Sowe consider the orbitsof ITGL Mi on it Hom Mi Mi But Gumi is an algebraic variety

acting as in thesquare

TO s inhere

theseare theidentity same a
status for an I



Similarly ITHom MiMi is an algebra varietyof dimension E kik Moreover the scalars in IT
Gthmi

act trivially on ITHomMiMi andso actually have an actionof ITallMi scalars with dimension Ek I
lookat commuting square t previous bluecomment

By H this dimension f dim I HomMiMi remember t ki s E Kiki Elkil I s f Kiki

so we must have infinitely many orbits andso we have infinitely many reps up to iso with this
dimension vector E Kivi And dim M E kite say But if Q is of fin reptype there are only
finitely many isomorphism classes of representations of dimension eE So Q cannot have fin rep type

because there's only finitely many indecomposableones all representations are
stuinite

perhaps trivial
of indecomposable representations

p
underlying graphof a quiver of finiterepstype

We've shown that T has to be a positive definite coexeter graph without multiple
edges d

d

classification of semisimple lie Algebrasof type Ar Br Cr Dr and Eo Ea Es Fa and Gz
was actually arising from the classification of positive definite coexeter graphs

Thus for Q of finite rep type we are restricting tothe simply laced graphs on our list

An aside suppose we have a coxeter graph c that arises froma rootsystem I Then Cis connected
iff I is irreducible Also I is simply rated c is a tree

If reduciblethen obviously disjoint if disjoint canpartition base 0 0100 where o fromonecomponent
and o from the other Let O Wo and I two Then I I v9 toseethisis actually disjoint
note that by table neap nip.at ofor ae o and pea so Capt o But C o is invariant under w
since w is generatedby reflections innerprod preserving so toed peg Capt o so we have actually
I ofWd i e I reducible Simply laced a tree homesfromtable

The strategy for proving the classification of positive definite coexeter graphs is similar towhat

of 8.8
Step 1 the only consisted Éosittiest definite coexeter graphs with 3 vertices are

T

s
i

2 vertices tripleedgesareor no
as far asyoutangoj

give a positive definite Coexeter graph

contract greenedge

if is partof a valid graph then I can replace itby

step3 can't have
of

rule out particular
graphs



remember simply laned

step4 show we're down to a list Ar Br Dr Eo Es Es Fa Ga iff tree So hotsimply
lacedguys are Br Fyanda

Alternative proof use representations throughout Pierce'sbook

psame
as 8 ll but numbering messed up at 8.8

Theorem 8.12 Gabriel a quiver underlying coexeter graph which is simply laced positive definite i.e

Ar Dr Ea EaEst Then arisingfromsome root system
isomorphism classes offinite

positive roots in Mrdimensional indecomposable

representations ofQ

the isomorphism classesof indecomposable representations a positiveroots in its wit a a or

µ en
dim

zina
simpleroots

remimof sasha reptasa
Tanthistbetveroot

dimension vectors I Kivi Ekiti ai simpleroots Thus kQ has finite representation type
9h'd d

Thenwe knowsince a finitelymany tveroots therearefinitelymanyiso masterof findim indecoma reps ofQ I.e kQhasfing
first of all we need to think about numbering of vertices we want to use a well chosen one dependent

on the direction of the arrows in Q

Definition 8.13 A vertex of Q is a sink if all the arrows meeting it have the vertex as the
target not start of any arrows

A vertex is a source it all the arrows meeting it have the vertex asthesource

Clearly any finite quiver without directed cycles has sources and sinks definitely has butnot necessarily
everyvertexeithera sinorsource

Definition 8.14 Given a quiverQ define a new quiver siQ with the same vertices but with
the orientation of the arrows meeting vertex i reversed

Example Q i s i s eg
g 2

d c J 4SzQ
clearlyneed ice and 2 3.4

s Q s o 1 a source and 4 a sink 3 alsoa sinkbut whatever

we can number the vertices is r so that is for any arrow which goes i j And sovertex 1
is a source and vertex r is asink

Definition 8is such a numbered quiver is a standardised quiver

Lemma 8.16 for a standardised quiverQ
1 if le jar then j is a sink and jts is a source of the quiver sis i sis Q
2 if I jer then j is a source and j l is a sink of the quiver s site srQ
3 if sis srQ srs i s Q Q



Example Q g g c d 6.7

z 3

take i 4 Then
in sasss s Q

y
7

c i s

Then we see that 4 becomes a sink and 4 1 5 becomes a source

And

al sussSosaQ o c g g 6

z 3

Now 4 is a sourie and 4 1 3 is a sink

Finally can run through 5756555453S s Q sis s 54555657Q Q
wehave an arrow

proof follows from Q being standardised and thatif j is are distinct vertices then i j in sins sisQ
if either i j in Qand either none orboth of i and appear among the ji is
or i i in Q and exactly one ofthe i andj appear among the ji is

For 3 note thatboth si sr and Sr is have reversed orientation of each arrow twice i i reversed
by si and s

Definition 8.17 numbering of vertices is admissible if for each j is asink of sitesite srQ

Lemma 818 There is an admissible numbering for the vertices of a ift has nodirected cycles

proof 816 tells us that a standardised quiver has an admissible numbering Clearly if we do have a
directed cycle there isnt an admissible numbering

if Q has a directed lycle say i then i is simultaneously botha target anda source so
can neverbe a sinkor a source I t arrows with i an end same goes forany direitedcycle I

The firstpart follows from lemma 8.16 part 2 whimsaysthat j is a source of sj sua f icier andso
sit sra must be a sink t l jer and certainlywhen jet s isra a and i is a sourie of Q
so i is a sink of sa soQ

Exercise given two quivers Q and Q with thesame underlying graph which is a tree then there is some
choice of ji is such that s sisQ Q



Now suppose j is a sink of Q

Sj s representations Q representations

Given a representation of Q V let 9 v W where Wi Vi for it
and Wi kernel of0 0 ofmaps representing thearrows with target vertex i j butwe needmapsin

tochange Vi
We have a map o w n d y y

reversedirectionandso weneed

wi Ker o

Pitture to have in mind saywe have

Q I g it then siQ q c g 7 q

If vi vivic 4 Vi vi r Vic vis areptof Q then take Vi Un and wk kerftoKerr e vitric so we

get natural pros maps pr Wi e VitoVic Vi and pre wieVi rn Vin

Note that there are obvious maps w Vi Wi for each i where i j inQ givenby projection wi is
a subspace of it.fi Vi andtherefore foreach i sit j i in sjQ

so W Wi is a representation of siQ for other arrows we represent by the same maps asbeforeforQ

The functor Jj is thedual of this Given a representation w of Sia let Vi wi if i j set

Vj cokernel of the E of themaps representing arrows with source in siQ

We have a map W I o wi v o ftIsis
v rept of Q

Picture to have in mind now g a na agun

dnt 9 fused Wrep of sie

sie I 7 q Q c i

say we have rept Vi ViVin 9 b t bi r vitric Then for o we can take Vi Vi as before
butfor j now we take Wj I cokernet of maps going outof u Comer141tocoker r e Vi Vic andso
our corresponding homomorphisms are I guess maybe restrictionto the lokernet ofeach component 3 invading
into direct sum I guess maybe

If V is a representation of Q for which 0 in A is surjective then 555 v V so 5 and 5

give a categorical equivalence

repnsof Q for

in f

reins of sigfor
which ofsurjective c which y injective

in ft



Now consider indecomposable representations v of Q Either d is surjective in H or V is the irreducible

1 dim representation with Uj k and Vito otherwise
This follows singe if 0 is not surjective then we have

a splitting U V'ou where d is surjective in v and u cokerd which gives us a rept with conero at
vertex j and o at all othervertiles so V is adecomposable rep E Theonly exception to this is the
case where u is a simple ka module corresponding to u k and o everywhere else

so we've shown

8 20 Lemma s and sit give a bijection between

indecomposable rep's Indecomposable rep's

4 of Q I irreducible J c f of siQ I irredulible

up o dimension i aime up omenae Iconientated atvertex j at enter

8 21 corollary KQ has finite rep type I has finitely many isomorphism masses of indecomposable ka modules

if and only if KsiQ has finite rep type

Remark Combining with exercise wesee that if Q andQ have thesame underlying graph which is atree
then can get from Q to Q by applying some sequenie ofsi's andso whether Q has finite rep type
depends only on the underlying graphofQ Either both Q andQ have fin rept type or neither have

fin rep type

Now we consider dimension vettori Gi en V rep of Q with O surjestie then

dimwit
if
dimvi dimVj by ranknullityi j

dimw dimvi it

Then the effect of applying St sends dimvector of V to saydim vector ofV where sa

is reflection wit simple root ai loresponding to the vertex j using the fact that our root system
is simply laned neap nipa It and in particular for a reduced systemwe have neap 1 so

Salpl p nimala pta then I thinn youjust runthrough tall and regroup

L
reflections exactly once in anyorder

The Coxeter elements arenot unique butthey are all conjugate and hence of the sameorder called the
Coxeter number h of WCO

In particular he
ofroots
rank
ry

and so thedimension ofthe lie algebra associated with I ofroots tr

dimensionofspace

usingduality
isomorphism

see lemma 4 is and den 4.17 dimill dim H t feetdim
that

rt ofroots
of c ad

where we recall that the ai span the dualspare Ht thats our euclideanspare with Capt ha ha



Example I type
Ar

Coxeternumber

rt coxeter element is rtl cycle in Srt WII
Br arle
Dr ar e
Es 12
Et 18
Es 30
74 12

G 6

A Coxeter element c hasno nonzero fixed points in IR Given a nonzero velar I c v which is notpositive
otherwise Ifcicu would be a nonzero fixed vector in Rr hate a basis andont'ttaint

coefficients can be nonneg

Definition 8.23 Suppose I e r is an admissible numbering of the vertices ofQ recall vertex j is asinkfor
Siti SrQ Then theCoxeter functor wit this numbering is the functor

Et S Et reptns
of a if't eacharrowisbeing

reversedtwice

C 55 g reptns
ofQ tenths

2 things to notice A Srt rep'sof Q rep'sof S Q using fait that r is asink b l of numbering
s rep'sofQ rep'sof sQ using fait that I is a source

and we candothis process inductively j a sink for site SrQ and i a souriefor s i s Q

S rep'sof Sjti srQ s site SrQ
similarly 5 rep's of s i s Q sjs i sQ

lemma 8.24 Given an indecomposable representation VofQ either
i E et v V or
ii Ctfu o

In case lit theeffectofdoing et at thelevelof dimension vectors weget

dim vector of tcu sa so digyector

proof wegetcase ii if any of the 5,1 5 v is the l dimensional representation concentrated atvertex

Then applying 5 gives zero otherwise we are in case i

case lil makes sense remember applying Sj gies ie arep wot si Q with Wi Vi it j
and Wj Oker14 where e are the maps going yb Vi representing directed edge i j so
then w E Vi andif the previous rep has vi o ti j then w has wi o ti so w o

otherwise keep on going 1 I guessusing surjectivity Ian recover v using 5 functors so we haveto
have that e etch b



Theorem 8.12 Gabriel a quiver underlying coexeter graph whichissimply laced positive definite i.e
Ar Dr Eo Eaest Then

isomorphismclassesoffinite
dimensional indecomposable

representations of
positiverootsin ar

theisomorphism classesof indecomposable representations a positiverootsin a wit a a or

M E kit'll za a
simpleroots

Proof of theorem 8.12 Bernstein Gelfand Ponomarev 1972
choose an admissable numbering for thevertices ofQ Let et bethe corresponding Coxeter functor sending

repnsofQ reins of Q Let c be thecorresponding Coxeter element sa Sar Ewoot suppose we have an
indecomposable repn of Q with dimension rector I remember theverticesarisefromtheroute

From the above there is some mail suchthat cmc is not positive soby 8.24 et v 0

The idea isthat et sends rep'sof Q to rep'sofQ and in particular

dimensionveitor of et v sa sar dinventorof u
sa sar let
IN

generalising dimensionvector of etMtv Mce

Dimension vectors have byden nonnegative coefficients and so if Cmc'tso cmte o so dimension vector

of etmarl o etmcr o

Choose m as smallas possible with et v o Thus for sometjm.in

St 5 et m u o

smallest possible condition

wherein thelast et

But 5 5 t 5 et u o

inns s si

j j
and

v e1m si 5ft i dime repn concentrated at vertex j I dimreptwith

Thus thedimensionvector I of V is c

sayjg
I a positive root this is a dimension vector sohastobepolit

Hence we've shown that if wehavean indecomposable rept of Q then the dimension vector of theret gives as
a positive note It by thinking about the Coxeter functors and the coxeter element associated to the
admissible numbering of Q Isomorphic rephsgive the same dimension vector so we get the first direction
of the correspondence

Isomorphism classes

of finitedimensional positive roots
indecomposablerep's
a a



Note that the argument shows that any indecomposable repn withthe same dimension vector is actually isomorphic tov

Conversely if V is a positive root then some chick isnot positive Choosethe shortest expression of the form
six sarcmly tobe not positive But Sait sarcm y ispositive Thus sage sarcmcel L
using 5.17d a simple reflection sa permutes thepositiveroots a and sends a a

so e m Si 5 didn't t gives an indecomposable representation of dimension vector I


